【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)EFC是直角三角形時(shí),那么BE的長(zhǎng)為_____

【答案】1.5或3

【解析】根據(jù)矩形的性質(zhì),利用勾股定理求得AC==5,由題意,可分△EFC是直角三角形的兩種情況:

如圖1,當(dāng)∠EFC=90°時(shí),由∠AFE=∠B=90°,∠EFC=90°,可知點(diǎn)F在對(duì)角線(xiàn)AC上,且AE是∠BAC的平分線(xiàn),所以可得BE=EF,然后再根據(jù)相似三角形的判定與性質(zhì),可知△ABC∽△EFC,即,代入數(shù)據(jù)可得,解得BE=1.5;

如圖2,當(dāng)∠FEC=90°,可知四邊形ABEF是正方形,從而求出BE=AB=3.

故答案為:1.5或3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AF=BEAEDF相交于點(diǎn)O

1)求證:DAF≌△ABE;

2)寫(xiě)出線(xiàn)段AE、DF的數(shù)量和位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2bxc(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題.

(1)寫(xiě)出方程ax2bxc0的兩個(gè)根;

(2)寫(xiě)出不等式ax2bxc0的解集;

(3)寫(xiě)出yx的增大而減小的自變量x的取值范圍;

(4)若方程ax2bxck有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ADBC,AEBC于點(diǎn)EADC的平分線(xiàn)交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.

(1)求證:CD與⊙O相切;

(2)BF24,OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(29a+c3b;(37a3b+2c0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣y2)、點(diǎn)C(7,y3)在該函數(shù)圖象上,則y1y3y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1x2,則x115x2.其中正確的結(jié)論有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若以一條線(xiàn)段為對(duì)角線(xiàn)作正方形,則稱(chēng)該正方形為這條線(xiàn)段的對(duì)角線(xiàn)正方形.例如,圖①中正方形ABCD即為線(xiàn)段BD對(duì)角線(xiàn)正方形.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點(diǎn)P從點(diǎn)C出發(fā),沿折線(xiàn)CA﹣AB5cm/s的速度運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B不重合時(shí),作線(xiàn)段PB對(duì)角線(xiàn)正方形,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),線(xiàn)段PB對(duì)角線(xiàn)正方形的面積為S(cm2).

(1)如圖③,借助虛線(xiàn)的小正方形網(wǎng)格,畫(huà)出線(xiàn)段AB對(duì)角線(xiàn)正方形”.

(2)當(dāng)線(xiàn)段PB對(duì)角線(xiàn)正方形有兩邊同時(shí)落在△ABC的邊上時(shí),求t的值.

(3)當(dāng)點(diǎn)P沿折線(xiàn)CA﹣AB運(yùn)動(dòng)時(shí),求St之間的函數(shù)關(guān)系式.

(4)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)線(xiàn)段PB對(duì)角線(xiàn)正方形至少有一個(gè)頂點(diǎn)落在∠A的平分線(xiàn)上時(shí),直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn),經(jīng)過(guò)A1,0)、B7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊△ABC

1)求拋物線(xiàn)的解析式;

2)在x軸上方的拋物線(xiàn)上是否存在點(diǎn)M,是SABM=SABC?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)如圖2,E是線(xiàn)段AC上的動(dòng)點(diǎn),F是線(xiàn)段BC上的動(dòng)點(diǎn),AFBE相交于點(diǎn)P

①若CE=BF,試猜想AFBE的數(shù)量關(guān)系及∠APB的度數(shù),并說(shuō)明理由;

②若AF=BE,當(dāng)點(diǎn)EA運(yùn)動(dòng)到C時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)(不需要寫(xiě)過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E在對(duì)角線(xiàn)AC上,連接EB、ED.

(1)求證:△BCE≌△DCE;

(2)延長(zhǎng)BE交AD于點(diǎn)F,若∠DEB=140,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案