如圖,在邊長(zhǎng)為24 cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長(zhǎng)方體形狀的包裝盒(A.B.C.D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn)).已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).

(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;

(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問(wèn)x應(yīng)取何值?

答案:
解析:

  分析:(1)根據(jù)已知得出這個(gè)正方體的底面邊長(zhǎng)a=x,EF==2x,再利用AB=24 cm,求出x即可得出這個(gè)包裝盒的體積V;

  (2)利用已知表示出包裝盒的表面,進(jìn)而利用函數(shù)最值求出即可.

  解答:解:(1)根據(jù)題意,知這個(gè)正方體的底面邊長(zhǎng)a=x,EF==2x,

  ∴x+2x+x=24,

  解得:x=6,

  則a=6

  V=a3=432(cm3);

  (2)設(shè)包裝盒的底面邊長(zhǎng)為acm,高為hcm,則a=,h=,

  ∴S=4ah+a2=4x(12-x)+=-6x2+96x=-6(x-8)2+384,

  ∵0<x<12,

  ∴當(dāng)x=8時(shí),S取得最大值384 cm2

  點(diǎn)評(píng):此題主要考查了二次函數(shù)的應(yīng)用以及二次函數(shù)最值求法,根據(jù)已知得出正方體的邊長(zhǎng)x+2x+x=24是解題關(guān)鍵.


提示:

二次函數(shù)的應(yīng)用.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011廣西崇左,24,14分)(本小題滿分14分)如圖,在邊長(zhǎng)為8的正方形ABCD

中,點(diǎn)OAD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.

(1)       求證:△ODM∽△MCN;

(2)       設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);

(3)       在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,設(shè)△CMN的周長(zhǎng)為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(廣西崇左卷)數(shù)學(xué) 題型:解答題

(2011廣西崇左,24,14分)(本小題滿分14分)如圖,在邊長(zhǎng)為8的正方形ABCD
中,點(diǎn)OAD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.
(1)      求證:△ODM∽△MCN;[來(lái)源:學(xué)+科+網(wǎng)]
(2)      設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);
(3)      在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,設(shè)△CMN的周長(zhǎng)為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué) 題型:解答題

(2011廣西崇左,24,14分)(本小題滿分14分)如圖,在邊長(zhǎng)為8的正方形ABCD

中,點(diǎn)OAD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.

(1)       求證:△ODM∽△MCN;[來(lái)源:學(xué)+科+網(wǎng)]

(2)       設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);

(3)       在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,設(shè)△CMN的周長(zhǎng)為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古烏蘭察布卷)數(shù)學(xué) 題型:解答題

(2011廣西崇左,24,14分)(本小題滿分14分)如圖,在邊長(zhǎng)為8的正方形ABCD

中,點(diǎn)OAD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.

(1)       求證:△ODM∽△MCN;[來(lái)源:學(xué)+科+網(wǎng)]

(2)       設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);

(3)       在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,設(shè)△CMN的周長(zhǎng)為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案