【題目】如果一個(gè)三角形的三邊a,b,c能滿足a2+b2=nc2(n為正整數(shù)),那么這個(gè)三角形叫做“n階三角形”.如三邊分別為1、2、的三角形滿足12+22=1×()2,所以它是1階三角形,但同時(shí)也滿足()2+22=9×12,所以它也是9階三角形.顯然,等邊三角形是2階三角形,但2階三角形不一定是等邊三角形.
(1)在我們熟知的三角形中,何種三角形一定是3階三角形?
(2)若三邊分別是a,b,c(a<b<c)的直角三角形是一個(gè)2階三角形,求a:b:c.
(3)如圖1,直角△ABC是2階三角形,AC<BC<AB,三條中線BD、AE、CF所構(gòu)成的三角形是何種三角形?四位同學(xué)作了猜想:
A同學(xué):是2階三角形但不是直角三角形;
B同學(xué):是直角三角形但不是2階三角形;
C同學(xué):既是2階三角形又是直角三角形;
D同學(xué):既不是2階三角形也不是直角三角形.
請(qǐng)你判斷哪位同學(xué)猜想正確,并證明你的判斷.
(4)如圖2,矩形OACB中,O為坐標(biāo)原點(diǎn),A在y軸上,B在x軸上,C點(diǎn)坐標(biāo)是(2,1),反比例函數(shù)y=(k>0)的圖象與直線AC、直線BC交于點(diǎn)E、D,若△ODE是5階三角形,直接寫(xiě)出所有可能的k的值.
【答案】(1)等腰直角三角形一定是3階三角形,(2)a:b:c=1::;(3)C同學(xué)猜想正確,(4)滿足題意k的值為1,4,7,.
【解析】
試題分析:(1)等腰直角三角形為3階三角形,根據(jù)題中的新定義驗(yàn)證即可;
(2)根據(jù)題中的新定義列出關(guān)系式,再利用勾股定理列出關(guān)系式,即可確定出a,b,c的比值;
(3)C同學(xué)猜想正確,由直角△ABC是2階三角形,根據(jù)(2)中的結(jié)論得出AC,BC,AB之比,設(shè)出三邊,表示出AE,BD,CF,利用題中的新定義判斷即可;
(4)根據(jù)圖形設(shè)出E與D坐標(biāo),利用勾股定理表示出OE2,OD2以及ED2,由△ODE是5階三角形,分類(lèi)討論列出關(guān)于k的方程,求出方程的解即可得到k的值
試題解析:(1)等腰直角三角形一定是3階三角形,
理由為:設(shè)等腰直角三角形兩直角邊為a,a,
根據(jù)勾股定理得:斜邊為a,
則有a2+(a)2=3a2,即等腰直角三角形一定是3階三角形;
(2)∵△ABC為一個(gè)2階直角三角形,
∴c2=a2+b2,且c2+a2=2b2,
兩式聯(lián)立得:2a2+b2=2b2,
整理得:b=a,c=a,
則a:b:c=1::;
(3)C同學(xué)猜想正確,
證明如下:如圖,∵△ABC為2階直角三角形,
∴AC:BC:AB=1::,
設(shè)BC=2,AC=2,AB=2,
∵AE,BD,CF是Rt△ABC的三條中線,
∴AE2=6,BD2=9,CF2=3,
∴BD2+CF2=2AE2,AE2+CF2=BD2,
∴BD,AE,CF所構(gòu)成的三角形既是直角三角形,又是2階三角形;
(4)根據(jù)題意設(shè)E(k,1),D(2,),
則AE=k,EC=2﹣k,BD=,CD=1﹣,OA=1,OB=2,
根據(jù)勾股定理得:OE2=1+k2,OD2=4+,ED2=(2﹣k)2+(1﹣)2,
由△ODE是5階三角形,分三種情況考慮:
當(dāng)OE2+OD2=5ED2時(shí),即1+k2+4+=5[(2﹣k)2+(1﹣)2],
整理得:k2﹣5k+4=0,即(k﹣1)(k﹣4)=0,
解得:k=1或k=4;
當(dāng)OE2+ED2=5OD2時(shí),(2﹣k)2+(1﹣)2+1+k2=5(4+),
整理得:k2﹣5k﹣14=0,即(k﹣7)(k+2)=0,
解得:k=7或k=﹣2(舍去);
當(dāng)OD2+ED2=5OE2時(shí),4++(2﹣k)2+(1﹣)2=5(1+k2),
整理得:7k2+10k﹣8=0,即(7k﹣4)(k+2)=0,
解得:k=或k=﹣2(舍去),
綜上,滿足題意k的值為1,4,7,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明有5張寫(xiě)著以下數(shù)字的卡片,請(qǐng)你按要求抽出卡片,完成下列各題.
(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是 .
(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最小,最小值是 .
(3)從中取出除0以外的4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,(注:每個(gè)數(shù)字只能用一次,如:23×[1﹣(﹣2)]=8×3=24),請(qǐng)另寫(xiě)出一種符合要求的運(yùn)算式子 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在頻數(shù)分布表中,各小組的頻數(shù)之和( )
A.小于數(shù)據(jù)總數(shù)
B.等于數(shù)據(jù)總數(shù)
C.大于數(shù)據(jù)總數(shù)
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)先化簡(jiǎn),再求值: (a+1)2-(3a2+a)÷a,其中a=-3.
(2)已知x+y=3,xy=-2. 求(x-1)(y-1)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a、b、c的大小關(guān)系為:c<b<0<a,則下面的判斷正確的是( )
A.abc<0
B.a﹣b>0
C.
D.c﹣a>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)1+(﹣2)+|﹣2﹣3|﹣5
(2)﹣24﹣ ×[5﹣(﹣3)2]
(3)( +1 ﹣2.75)×(﹣24)+(﹣12016).
(4)[50﹣( ﹣ + )×(﹣6)2]÷(﹣7)2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com