【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為點F,DE=DG.若△ADG和△AED的面積分別為50和30,則△EDF的面積為_____.
【答案】10
【解析】
過點D作DH⊥AC于H,根據(jù)角平分線上的點到角的兩邊距離相等可得DF=DH,然后利用“HL”證明Rt△DEF和Rt△DGH全等,根據(jù)全等三角形的面積相等可得S△EDF=S△GDH,設(shè)面積為S,然后根據(jù)S△ADF=S△ADH列出方程求解即可.
解:如圖,過點D作DH⊥AC于H,
∵AD是△ABC的角平分線,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,,
∴Rt△DEF≌Rt△DGH(HL),
∴S△EDF=S△GDH,設(shè)面積為S,
同理Rt△ADF≌Rt△ADH,
∴S△ADF=S△ADH,
∴30+S=50S,
解得S=10.
故答案為10.
科目:初中數(shù)學 來源: 題型:
【題目】已知一個三角形的第一條邊長為2a+5b,第二條邊比第一條邊長3a﹣2b,第三條邊比第二條邊短3a.
(1)則第二邊的邊長為 ,第三邊的邊長為 ;
(2)用含a,b的式子表示這個三角形的周長,并化簡;
(3)若a,b滿足|a﹣5|+(b﹣3)2=0,求出這個三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)利用尺規(guī)作圖作邊BC的高AD,垂足為D(保留作圖痕跡,不寫作法);
(2)求證:BD=CD.
(3)如果三角形的周長是22,一邊長為5,求它的另外兩邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了完成“舌尖上的中國”的錄制,節(jié)目組隨機抽查了某省“A.奶制品類,B.肉制品類,C.面制品類,D.豆制品類”四類特色美食若干種,將收集的數(shù)據(jù)整理并繪制成下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中信息完成下列問題:
(1)這次抽查了四類特色美食共 種,扇形統(tǒng)計圖中a= ,扇形統(tǒng)計圖中A部分圓心角的度數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)如果全省共有這四類特色美食120種,請你估計約有多少種屬于“豆制品類”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD由四個相同的大長方形,四個相同的小長形以及一個小正方形組成,其中四個大長方形的長和寬分別是小長方形長和寬的2倍,若中間小正方形的面積為1,則大正方形ABCD的面積是( )
A.36B.25C.20D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列計算 27a8 a3 9a 2 的順序不正確的是( )
A.(27 9)a83 2B.(27a8 a3 ) 9a 2
C.27a8 (a3 9a 2 )D.(27a8 9a 2 ) a3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠BAE+∠AED=180°,∠1=∠2,那么∠F=∠G嗎?為什么?
解:因為∠BAE+∠AED=180°( 已知)
所以AB∥CD________
所以∠BAE=∠AEC________
因為∠1=∠2( 已知)
所以∠BAE—∠1=∠AEC—∠2(等式性質(zhì))
即∠3=∠4
所以AF∥EG________,
所以∠F=∠G________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B>90°,CD為∠ACB的角平分線,在AC邊上取點E,使DE=DB,且∠AED>90°.若∠A=α,∠ACB=β,則( 。
A.∠AED=180°﹣α﹣βB.∠AED=180°﹣α﹣β
C.∠AED=90°﹣α+βD.∠AED=90°+α+β
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com