【題目】已知反比例函數(shù)y= ,在下列結(jié)論中,不正確的是( )
A.圖象必經(jīng)過點(diǎn)(1,2)
B.y隨x的增大而減少
C.圖象在第一、三象限
D.若x>1,則y<2

【答案】B
【解析】解:A、∵1×2=2,∴圖象必經(jīng)過點(diǎn)(1,2),故本選項(xiàng)正確;
B、∵反比例函數(shù)y= 中,k=2>0,∴此函數(shù)的圖象在每一象限內(nèi)y隨x的增大而減小,故本選項(xiàng)錯(cuò)誤;
C、∵反比例函數(shù)y= 中,k=2>0,∴此函數(shù)的圖象在一、三象限,故本選項(xiàng)正確;
D、∵當(dāng)x>1時(shí),此函數(shù)圖象在第一象限,∴0<y<2,故本選項(xiàng)正確.
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,,邊上的高,則邊的長為( )

A. 4 B. 14 C. 4 或14 D. 8或14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且經(jīng)過點(diǎn)(﹣1,0),康康依據(jù)圖象寫出了四個(gè)結(jié)論:
①如果點(diǎn)(﹣ ,y1)和(2,y2)都在拋物線上,那么y1<y2;
②b2﹣4ac>0;
③m(am+b)<a+b(m≠1的實(shí)數(shù));
=﹣3.
康康所寫的四個(gè)結(jié)論中,正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中, 厘米, 厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_______ 厘米/秒時(shí),能夠在某一時(shí)刻使BPDCQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-3x與雙曲線y在第四象限內(nèi)的部分相交于點(diǎn)Aa,-6),將這條直線向

上平移后與該雙曲線交于點(diǎn)M,且△AOM的面積為3.

(1)求k的值;

(2)求平移后得到的直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘海輪位于燈塔P的北偏東60°方向,距離燈塔80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的東南方向上的B處.這時(shí),海輪所在的B處距離燈塔P有多遠(yuǎn)?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABCADE中,∠BAC=DAE=90°,AB=AC,AD=AE,點(diǎn)C,DE三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,AB=AC,ADBCDAE平分∠BAD,交BCE,在ABC外有一點(diǎn)F,使FAAE,FCBC

(1)求證:BE=CF;

(2)在AB上取一點(diǎn)M,使得BM=2DE,連接ME

①求證:MEBC;

②求∠EMC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案