如圖所示,⊙O1和⊙O2相切于P點(diǎn),過(guò)P的直線交⊙O1于A,交⊙O2于B,求證:O1A∥O2B.
分析:由O1A=O1P,O2P=O2B,根據(jù)等邊對(duì)等角的性質(zhì),可得∠A=∠1,∠2=∠B,又由對(duì)頂角相等,易證得∠A=∠B,繼而可證得O1A∥O2B.
解答:證明:∵O1A=O1P,O2P=O2B,
∴∠A=∠1,∠2=∠B,
∵∠1=∠2,
∴∠A=∠B,
∴O1A∥O2B.
點(diǎn)評(píng):此題考查了相切兩圓的性質(zhì)、等腰三角形的性質(zhì)以及平行線的判定.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切線,B、C是切點(diǎn),求證:AB⊥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•畢節(jié)地區(qū))如圖所示,⊙O1和⊙O2外切于點(diǎn)C,AB是⊙O1和⊙O2的外公切線,A、B為切點(diǎn),且∠ACB=90°.以AB所在直線為軸,過(guò)點(diǎn)C且垂直于AB的直線為軸建立直角坐標(biāo)系,已知AO=4,OB=1.
(1)分別求出A、B、C各點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問(wèn)這條拋物線的頂點(diǎn)是否落在兩圓連心線O1 O2上?如果在,請(qǐng)證明;如果不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,⊙O1和⊙O2外切于點(diǎn)A,AB是⊙O1的直徑,BD切⊙O2于點(diǎn)D,交⊙O1O2
于點(diǎn)C,求證:AB•CD=AC•BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,⊙O1和⊙O2外切于點(diǎn)C,AB是⊙O1和⊙O2的外公切線,A、B為切點(diǎn),且∠ACB=90°.以AB所在直線為軸,過(guò)點(diǎn)C且垂直于AB的直線為軸建立直角坐標(biāo)系,已知AO=4,OB=1.
(1)分別求出A、B、C各點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問(wèn)這條拋物線的頂點(diǎn)是否落在兩圓連心線O1 O2上?如果在,請(qǐng)證明;如果不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案