【題目】已知和,點(diǎn)在軸上,若要使最小,則點(diǎn)的坐標(biāo)為______.
【答案】
【解析】
如圖,作點(diǎn)A關(guān)于x軸是對稱點(diǎn)A′,連接BA′,交x軸于點(diǎn)P,根據(jù)點(diǎn)A坐標(biāo)可得點(diǎn)A關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為A′(0,-2),根據(jù)軸對稱的性質(zhì)可得PA=PA′,即可得BA′是PA+PB的最小值,利用待定系數(shù)法可求出直線BA′的解析式,進(jìn)而可得點(diǎn)P坐標(biāo).
如圖,作點(diǎn)A關(guān)于x軸的對稱點(diǎn)A′,連接BA′,交x軸于點(diǎn)P,
∵點(diǎn)A(0,2),
∴點(diǎn)A′(0,-2),
∵點(diǎn)A與點(diǎn)A′關(guān)于x軸對稱,點(diǎn)P在x軸上,
∴PA=PA′,
∴PA+PB=PB+PA′=BA′,
∴BA′是PA+PB的最小值,
設(shè)直線BA′的解析式為y=kx+b,
∴,
解得:,
∴直線BA′的解析式為y=x-2,
當(dāng)y=0時,x=2,
∴點(diǎn)P坐標(biāo)為(2,0).
故答案為(2,0)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,.
(1)尺規(guī)作圖(保留作圖痕跡,不寫作法與證明):
①作的平分線交邊于點(diǎn);
②過點(diǎn)作于點(diǎn);
(2)在(1)所畫圖中,若,,則長為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,已知點(diǎn)A(﹣1,﹣1),點(diǎn)B在第二象限,OB=,拋物線經(jīng)過點(diǎn)A和B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的對稱軸;
(3)如果該拋物線的對稱軸分別和邊AO、BO的延長線交于點(diǎn)C、D,設(shè)點(diǎn)E在直線AB上,當(dāng)△BOE和△BCD相似時,直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A和點(diǎn)D.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半徑;
②設(shè)⊙O與AB邊的另一個交點(diǎn)為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解某年級1200名學(xué)生每學(xué)期參加社會實(shí)踐活動時間,隨機(jī)對該年級50名學(xué)生進(jìn)行了調(diào)查,結(jié)果如下表:
時間(天) | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
人 數(shù) | 1 | 2 | 4 | 5 | 7 | 11 | 8 | 6 | 4 | 2 |
(1)在這個統(tǒng)計中,眾數(shù)是 ,中位數(shù)是 ;
(2)補(bǔ)全下面的頻率分布表和頻率分布直方圖:
分組 | 頻數(shù) | 頻率 |
3.5~5.5 | 3 | 0.06 |
5.5~7.5> | 9 | 0.18 |
7.5~9.5 | 0.36 | |
9.5~11.5 | 14 | |
11.5~13.5 | 6 | 0.12 |
合 計 | 50 | 1.00 |
(3)請你估算這所學(xué)校該年級的學(xué)生中,每學(xué)期參加社會實(shí)踐活動時間不少于9天的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為線段上一點(diǎn),, ,過點(diǎn)作直線,,在線段上有一點(diǎn),使得,連接,若動點(diǎn)從點(diǎn)開始以每秒個單位的速度按的路徑運(yùn)動,當(dāng)運(yùn)動到點(diǎn)時停止運(yùn)動,設(shè)出發(fā)的時間為秒.
(1)當(dāng)點(diǎn)在線段上運(yùn)動時,若,則的值為_________;
(2)求當(dāng)為何值時,為等腰三角形;
(3)若點(diǎn)為內(nèi)部射線上一點(diǎn),當(dāng)為等腰直角三角形,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B(3,3)在雙曲線 (x>0)上,點(diǎn)D在雙曲線 (x<0)上,點(diǎn)A和點(diǎn)C分別在x軸,y軸的正半軸上,且點(diǎn)A,B,C,D構(gòu)成的四邊形為正方形.
(1)求k的值;
(3)求點(diǎn)A的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com