精英家教網 > 初中數學 > 題目詳情
(2008•貴港)已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
(1)求證:AD=BD;
(2)求證:DF是⊙O的切線;
(3)若⊙O的半徑為3,sin∠F=,求DE的長.

【答案】分析:(1)連接CD,由圓周角定理易得CD⊥AB,又有AC=BC,故AD=BD.
(2)連接OD,根據三角形中角的互余關系可得∠ODF=90°,故DF是⊙O的切線.
(3)根據三角函數的定義,可得sin∠F=,進而可得CF=5-3=2,再根據比例的關系,代入數據可得答案.
解答:(1)證明:如圖,連接CD,(1分)
∵BC是直徑,
∴∠BDC=90°,
即CD⊥AB.(2分)
∵AC=BC,
∴AD=BD.(3分)

(2)證明:連接OD,(4分)
∵∠A=∠B,∠AED=∠BDC=90°,
∴∠ADE=∠DCO.
∵OC=OD,
∴∠DCO=∠CDO.
∴∠CDO=∠ADE.
由(1)得∠ADE+∠CDE=90°,
∴∠CDO+∠CDE=90°.(5分)
即∠ODF=90°.
∴DF是⊙O的切線.(6分)

(3)解:在Rt△DOF中,
∵sin∠F=,
∴OF=5.(7分)
∵OC=3,
∴CF=5-3=2.
由(2)得∠DEA=∠ODF=90°,
∴OD∥AC.
∴△CEF∽△ODF.(9分)
.(10分)

∴DE=.(11分)
點評:本題考查切線的判定,線段等量關系的證明及線段長度的求法,要求學生掌握常見的解題方法,并能結合圖形選擇簡單的方法解題.
練習冊系列答案
相關習題

科目:初中數學 來源:2008年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2008•貴港)已知一元二次方程x2-4x-5=0的兩個實數根為x1、x2,且x1<x2.若x1、x2分別是拋物線y=-x2+bx+c與x軸的兩個交點A、B的橫坐標(如下圖所示).
(1)求該拋物線的解析式;
(2)設(1)中的拋物線與y軸的交點為C,拋物線的頂點為D,請直接寫出點C、D的坐標并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請說明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為()].

查看答案和解析>>

科目:初中數學 來源:2008年廣西貴港市中考數學試卷(解析版) 題型:解答題

(2008•貴港)已知一元二次方程x2-4x-5=0的兩個實數根為x1、x2,且x1<x2.若x1、x2分別是拋物線y=-x2+bx+c與x軸的兩個交點A、B的橫坐標(如下圖所示).
(1)求該拋物線的解析式;
(2)設(1)中的拋物線與y軸的交點為C,拋物線的頂點為D,請直接寫出點C、D的坐標并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請說明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為()].

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《圓》(14)(解析版) 題型:解答題

(2008•貴港)已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
(1)求證:AD=BD;
(2)求證:DF是⊙O的切線;
(3)若⊙O的半徑為3,sin∠F=,求DE的長.

查看答案和解析>>

科目:初中數學 來源:2008年廣西貴港市中考數學試卷(解析版) 題型:解答題

(2008•貴港)已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
(1)求證:AD=BD;
(2)求證:DF是⊙O的切線;
(3)若⊙O的半徑為3,sin∠F=,求DE的長.

查看答案和解析>>

同步練習冊答案