【題目】一條排水管的截面如圖所示.已知排水管的半徑OB=10,水面寬AB=16.求截面圓心O到水面的距離.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟裁剪和拼圖.
第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點),得到△ABE和△ADE紙片;
第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;
第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).
則由紙片拼成的五邊形PMQRN中,BD= , 對角線MN長度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點F、G,若BGBA=48,F(xiàn)G= ,DF=2BF,求AH的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,E是AB延長線上一點,EC切⊙O于點C,OP⊥AO交AC于點P,交EC的延長線于點D.
(1)求證:△PCD是等腰三角形;
(2)CG⊥AB于H點,交⊙O于G點,過B點作BF∥EC,交⊙O于點F,交CG于Q點,連接AF,如圖2,若sinE= ,CQ=5,求AF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,AD與⊙O相切于點B,D,C為⊙O上一點,且∠BCD=140°,則∠A的度數(shù)是( 。
A.70°
B.105°
C.100°
D.110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件,不能判定△ABC與△DEF相似的是( )
A.∠C=∠F=90°,∠A=55°,∠D=35°
B.∠C=∠F=90°,AB=10,BC=6,DE=15,EF=9
C.∠C=∠F=90°,
D.∠B=∠E=90°, =
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究.探究過程如下,請補充完整.
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | n | 3 | … |
其中,m= , n= .
(2)根據(jù)表格數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì):①;② .
(4)進一步探究函數(shù)圖象發(fā)現(xiàn): ①函數(shù)圖象與x軸有個交點,所以對應的方程x2﹣2|x|=0有個實數(shù)根;
②方程x2﹣2|x|=2有個實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3cm,動點M自A點出發(fā)沿AB方向以每秒1cm的速度運動,同時動點N自A點出發(fā)沿折線AD﹣DC﹣CB以每秒3cm的速度運動,到達B點時運動同時停止.設(shè)△AMN的面積為y(cm2).運動時間為x(秒),則下列圖象中能大致反映y與x之間函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com