【題目】對(duì)任意一個(gè)四位正整數(shù)數(shù)m,若其千位與百位上的數(shù)字之和為9,十位與個(gè)位上的數(shù)字之和也為9,那么稱m為“重九數(shù)”,如:1827、3663.將“重九數(shù)”m的千位數(shù)字與十位數(shù)字對(duì)調(diào),百位數(shù)字與個(gè)位數(shù)字對(duì)調(diào),得到一個(gè)新的四位正整數(shù)數(shù)n,如:m=2718,則n=1827,記D(m,n)=m+n.
(1)請(qǐng)寫出兩個(gè)四位“重九數(shù)”: , .
(2)求證:對(duì)于任意一個(gè)四位“重九數(shù)”m,其D(m,n)可被101整除.
(3)對(duì)于任意一個(gè)四位“重九數(shù)”m,記f(m,n)=,當(dāng)f(m,n)是一個(gè)完全平方數(shù)時(shí),且滿足m>n,求滿足條件的m的值.
【答案】(1)3645,7263;(2)見解析;(3)9054、8163、6318、5427、4536
【解析】
(1)根據(jù)“重九數(shù)“定義寫出兩個(gè)符合要求的數(shù)即可;
(2)將m的各個(gè)數(shù)位上的數(shù)字用字母表示,得出D(m,n)的表達(dá)式,一定有因數(shù)101;
(3)先得出f(m,n)的表達(dá)式,再根據(jù)完全平方數(shù)的特征得出不定方程,解不定方程即可求出m的值.
解:(1)根據(jù)“重九數(shù)“定義寫出兩個(gè)符合要求的數(shù)即可,3645,7263,(答案不唯一,符合題意即可),
故答案為:3645,7263;
(2)證明:設(shè)任意一個(gè)“重九數(shù)“m為,(a,b,c,d均為1~9的自然數(shù)),則n為,
∴D(m,n)=m+n=1000a+100b+10c+d+1000c+100d+10a+b=101(10a+10c+b+d),
∴D(m,n)可被101整除;
(3)由(2)可知,對(duì)于任意的“重九數(shù)“m=,有D(m,n)=101(10a+10c+b+d),
∴f(m,n)=10a+10c+b+d,
∵a+b=9,c+d=9,
∴b=9﹣a,d=9﹣c,
∴f(m,n)=10a+10c+b+d=10a+10c+9﹣a+9﹣c=9a+9c+18=9(a+c+2),
∵f(m,n)是完全平方數(shù),9是完全平方數(shù),
∴a+c+2是完全平方數(shù),
∵1≤a≤9,1≤c≤9,且m>n,
∴a>c,5≤a+c+2≤19,
∴a+c+2=9或16,
當(dāng)a+c+2=9時(shí),解得或或.
當(dāng)a+c+2=16時(shí),解得或.
綜上所述,滿足要求的m的值有:9054、8163、6318、5427、4536.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生掌握知識(shí)更加牢固,某校九年級(jí)物理組老師們將物理實(shí)驗(yàn)的教學(xué)方式由之前的理論教學(xué)改進(jìn)為理論+實(shí)踐,一段時(shí)間后,從九年級(jí)隨機(jī)抽取15名學(xué)生,對(duì)他們?cè)诮虒W(xué)方式改進(jìn)前后的物理實(shí)驗(yàn)成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)用表示,共分成4組:A.,B.,C.,D.),下面給出部分信息:
教學(xué)方式改進(jìn)前抽取的學(xué)生的成績(jī)?cè)?/span>組中的數(shù)據(jù)為:80,83,85,87,89.
教學(xué)方式改進(jìn)后抽取的學(xué)生成績(jī)?yōu)椋?/span>72,70,76,100,98,100,82,86,95,90,100,86,84,93,88.
教學(xué)方式改進(jìn)前抽取的學(xué)生成績(jī)頻數(shù)分布直方圖
教學(xué)方式改進(jìn)前后抽取的學(xué)生成績(jī)對(duì)比統(tǒng)計(jì)表
統(tǒng)計(jì)量 | 改進(jìn)前 | 改進(jìn)后 |
平均數(shù) | 88 | 88 |
中位數(shù) | ||
眾數(shù) | 98 |
根據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中的值;
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該校九年級(jí)學(xué)生的物理實(shí)驗(yàn)成績(jī)?cè)诮虒W(xué)方式改進(jìn)前好,還是改進(jìn)后好?請(qǐng)說明理由(一條理由即可);
(3)若該校九年級(jí)有300名學(xué)生,規(guī)定物理實(shí)驗(yàn)成績(jī)?cè)?/span>90分及以上為優(yōu)秀,估計(jì)教學(xué)方式改進(jìn)后成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤(rùn)為40元(市場(chǎng)管理部門規(guī)定,該種玩具每件利潤(rùn)不能超過60元),每天可售出50件.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.設(shè)銷售單價(jià)增加元,每天售出件.
(1)請(qǐng)寫出與之間的函數(shù)表達(dá)式;
(2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤(rùn)2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與雙曲線在第一象限內(nèi)交于點(diǎn)B,BC丄x軸于點(diǎn)C,OC=2AO.
(1)求雙曲線的解析式.
(2)點(diǎn)D為y軸上一個(gè)動(dòng)點(diǎn),若S△ADB=3,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明站在某廣場(chǎng)一看臺(tái)C處,從眼睛D處測(cè)得廣場(chǎng)中心F的俯角為21°,若CD=1.6米,BC=1.5米,BC平行于地面FA,臺(tái)階AB的坡度為i=3:4,坡長(zhǎng)AB=10米,則看臺(tái)底端A點(diǎn)距離廣場(chǎng)中心F點(diǎn)的距離約為(參考數(shù)據(jù):sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)( )
A.8.8米B.9.5米C.10.5米D.12米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(是常數(shù),)圖象的對(duì)稱軸是直線,其圖象的一部分如圖所示,下列說法中①;②;③當(dāng)時(shí),;④;⑤.正確的結(jié)論有( )
A.①②④B.②③④C.①③⑤D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為平分線,,以的長(zhǎng)為直徑作交于點(diǎn),過點(diǎn)作于點(diǎn).
(1)求證:是的切線.
(2)若,的長(zhǎng)=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在地時(shí)距地面的高度為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式.
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(4,2),OA、OC分別落在x軸和y軸上,OB是矩形的對(duì)角線.將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到△ODE,OD與CB相交于點(diǎn)F,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)F,交AB于點(diǎn)G.
(1)求k的值和點(diǎn)G的坐標(biāo);
(2)連接FG,則圖中是否存在與△BFG相似的三角形?若存在,請(qǐng)把它們一一找出來,并選其中一種進(jìn)行證明;若不存在,請(qǐng)說明理由;
(3)在線段OA上存在這樣的點(diǎn)P,使得△PFG是等腰三角形.請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com