(2002•杭州)如圖所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD等于( )

A.4
B.3
C.2
D.1
【答案】分析:過點P做PM∥CO交AO于M,可得∠CPO=∠POD,再結(jié)合題目推出四邊形COMP為菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性質(zhì)即可得PD.
解答:解:如圖:過點P做PM∥CO交AO于M,PM∥CO
∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA
∴四邊形COMP為菱形,PM=4
PM∥CO?∠PMD=∠AOP+∠BOP=30°,
又∵PD⊥OA
∴PD=PC=2.
令解:作CN⊥OA.
∴CN=OC=2,
又∵∠CNO=∠PDO,
∴CN∥PD,
∵PC∥OD,
∴四邊形CNDP是長方形,
∴PD=CN=2
故選C.
點評:本題運用了平行線和直角三角形的性質(zhì),并且需通過輔助線求解,難度中等偏上.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(05)(解析版) 題型:解答題

(2002•杭州)如圖,小王在陸地上從A地經(jīng)B地到達C地總行程是14千米,這里的∠ABC為直角,且∠BAC的正切值為0.75.那么小王乘海輪從A地直接到C地的最短距離是多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2002•杭州)如圖,⊙O1與⊙O2外切于點C,⊙O1與⊙O2的連心線與外公切線相交于點P,外公切線與兩圓的切點分別為A、B,且AC=4,BC=5.
(1)求線段AB的長;
(2)證明:PC2=PA•PB.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(14)(解析版) 題型:解答題

(2002•杭州)如圖,⊙O1與⊙O2外切于點C,⊙O1與⊙O2的連心線與外公切線相交于點P,外公切線與兩圓的切點分別為A、B,且AC=4,BC=5.
(1)求線段AB的長;
(2)證明:PC2=PA•PB.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《三角形》(09)(解析版) 題型:解答題

(2002•杭州)如圖,⊙O1與⊙O2外切于點C,⊙O1與⊙O2的連心線與外公切線相交于點P,外公切線與兩圓的切點分別為A、B,且AC=4,BC=5.
(1)求線段AB的長;
(2)證明:PC2=PA•PB.

查看答案和解析>>

同步練習冊答案