【題目】如圖,已知在△ABC中,P為AB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。
A. B. C. D.
【答案】C
【解析】
A、加一公共角,根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似可以得結(jié)論;
B、加一公共角,根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似可以得結(jié)論;
C、其夾角不相等,所以不能判定相似;
D、其夾角是公共角,根據(jù)兩邊的比相等,且夾角相等,兩三角形相似.
A、∵∠A=∠A,∠ACP=∠B,
∴△ACP∽△ABC,
所以此選項(xiàng)的條件可以判定△ACP∽△ABC;
B、∵∠A=∠A,∠APC=∠ACB,
∴△ACP∽△ABC,
所以此選項(xiàng)的條件可以判定△ACP∽△ABC;
C、∵,
當(dāng)∠ACP=∠B時(shí),△ACP∽△ABC,
所以此選項(xiàng)的條件不能判定△ACP∽△ABC;
D、∵,
又∠A=∠A,
∴△ACP∽△ABC,
所以此選項(xiàng)的條件可以判定△ACP∽△ABC,
本題選擇不能判定△ACP∽△ABC的條件,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2﹣x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以A,B,E,F為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c過點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)A、O不重合),過點(diǎn)M作x軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ.
(1)求拋物線表達(dá)式;
(2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時(shí),求PQ的長(zhǎng)度;
(3)當(dāng)△PBQ為等腰三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象相交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,2),點(diǎn)B的坐標(biāo)是(﹣2,w).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)在x軸的正半軸上找一點(diǎn)C,使△AOC的面積等于△ABO的面積,并求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,轉(zhuǎn)盤被平均分成三塊扇形,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)動(dòng)過程中,指針保持不動(dòng),轉(zhuǎn)盤停止后,如果指針恰好指在分割線上,則重轉(zhuǎn)一次,直到指針指向一個(gè)數(shù)字所在的區(qū)域?yàn)橹梗?/span>
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用畫樹狀圖或列表的方法求兩次指針?biāo)竻^(qū)域數(shù)字不同的概率;
(2)在第(1)題中,兩次轉(zhuǎn)到的區(qū)域的數(shù)字作為兩條線段的長(zhǎng)度,如果第三條線段的長(zhǎng)度為5,求這三條線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一根長(zhǎng)為的鐵絲剪成兩段,并把每一段鐵絲圍成一個(gè)正方形.若設(shè)圍成的一個(gè)正方形的邊長(zhǎng)為.
(1)要使這兩個(gè)正方形的面積的和等于,則剪出的兩段鐵絲長(zhǎng)分別是多少?
(2)剪出的兩段鐵絲長(zhǎng)分別是多少時(shí),這兩個(gè)正方形的面積和最?最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E,若BF=6,AB=4,則AE的長(zhǎng)為( 。
A. B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車與一輛快車分別從甲、乙兩地同時(shí)出發(fā),勻速相向而行,兩車在途中相遇后分別按原速同時(shí)駛往甲地,兩車之間的距離S(km)與慢車行駛時(shí)間t(h)之間的函數(shù)圖象如圖所示,下列說法:
①甲、乙兩地之間的距離為560km;
②快車速度是慢車速度的1.5倍;
③快車到達(dá)甲地時(shí),慢車距離甲地60km;
④相遇時(shí),快車距甲地320km;
其中正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com