【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求對(duì)角線(xiàn)BD的長(zhǎng).
②若AC⊥BD,求證:AD=CD;
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對(duì)角線(xiàn)BD上一點(diǎn),且BP=2PD,過(guò)點(diǎn)P作直線(xiàn)分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長(zhǎng).
【答案】(1)①;②證明見(jiàn)解析;(2)5或6.5.
【解析】
試題分析:(1)①只要證明四邊形ABCD是正方形即可解決問(wèn)題;
②只要證明△ABD≌△CBD,即可解決問(wèn)題;
(2)若EF⊥BC,則AE≠EF,BF≠EF,推出四邊形ABFE表示等腰直角四邊形,不符合條件.若EF與BC不垂直,①當(dāng)AE=AB時(shí),如圖2中,此時(shí)四邊形ABFE是等腰直角四邊形,②當(dāng)BF=AB時(shí),如圖3中,此時(shí)四邊形ABFE是等腰直角四邊形,分別求解即可;
試題解析:(1)①∵AB=AC=1,AB∥CD,∴S四邊形ABCD是平行四邊形,∵AB=BC,∴四邊形ABCD是菱形,∵∠ABC=90°,∴四邊形ABCD是正方形,∴BD=AC==.
(2)如圖1中,連接AC、BD.
∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.
(2)若EF⊥BC,則AE≠EF,BF≠EF,∴四邊形ABFE表示等腰直角四邊形,不符合條件.
若EF與BC不垂直,①當(dāng)AE=AB時(shí),如圖2中,此時(shí)四邊形ABFE是等腰直角四邊形,∴AE=AB=5.
②當(dāng)BF=AB時(shí),如圖3中,此時(shí)四邊形ABFE是等腰直角四邊形,∴BF=AB=5,∵DE∥BF,∴BF=PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,綜上所述,滿(mǎn)足條件的AE的長(zhǎng)為5或6.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市有12000名學(xué)生參加考試,為了了解考試情況,從中抽取1000名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,在這個(gè)問(wèn)題中,有下列三種說(shuō)法:①1000名考生是總體的一個(gè)樣本;②每一名考生是個(gè)體;③樣本容量是1000人.其中正確的說(shuō)法有( 。
A. 0種 B. 1種 C. 2種 D. 3種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖1,拋物線(xiàn)與軸交于A,B兩點(diǎn),點(diǎn)P在拋物線(xiàn)上(點(diǎn)P與A,B兩點(diǎn)不重合),如果△ABP的三邊滿(mǎn)足,則稱(chēng)點(diǎn)P為拋物線(xiàn)的勾股點(diǎn)。
(1)直接寫(xiě)出拋物線(xiàn)的勾股點(diǎn)的坐標(biāo);
(2)如圖2,已知拋物線(xiàn)C:與軸交于A,B兩點(diǎn),點(diǎn)P(1,)是拋物線(xiàn)C的勾股點(diǎn),求拋物線(xiàn)C的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)Q在拋物線(xiàn)C上,求滿(mǎn)足條件的點(diǎn)Q(異于點(diǎn)P)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判斷∠D是否是直角,并說(shuō)明理由.
(2)求四邊形草坪ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實(shí)數(shù)根.比如對(duì)于方程,操作步驟是:
第一步:根據(jù)方程的系數(shù)特征,確定一對(duì)固定點(diǎn)A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動(dòng)一個(gè)直角三角板,使一條直角邊恒過(guò)點(diǎn)A,另一條直角邊恒過(guò)點(diǎn)B;
第三步:在移動(dòng)過(guò)程中,當(dāng)三角板的直角頂點(diǎn)落在x軸上點(diǎn)C處時(shí),點(diǎn)C的橫坐標(biāo)m即為該方程的一個(gè)實(shí)數(shù)根(如圖1);
第四步:調(diào)整三角板直角頂點(diǎn)的位置,當(dāng)它落在x軸上另一點(diǎn)D處時(shí),點(diǎn)D的橫坐標(biāo)n即為該方程的另一個(gè)實(shí)數(shù)根.
(1)在圖2中,按照“第四步”的操作方法作出點(diǎn)D(請(qǐng)保留作出點(diǎn)D時(shí)直角三角板兩條直角邊的痕跡);
(2)結(jié)合圖1,請(qǐng)證明“第三步”操作得到的m就是方程的一個(gè)實(shí)數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個(gè)固定點(diǎn)的位置,若要以此方法找到一元二次方程 (a≠0,≥0)的實(shí)數(shù)根,請(qǐng)你直接寫(xiě)出一對(duì)固定點(diǎn)的坐標(biāo);
(4)實(shí)際上,(3)中的固定點(diǎn)有無(wú)數(shù)對(duì),一般地,當(dāng)m1,n1,m2,n2與a,b,c之間滿(mǎn)足怎樣的關(guān)系時(shí),點(diǎn)P(m1,n1),Q(m2,n2)就是符合要求的一對(duì)固定點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=AC,AB的垂直平分線(xiàn)交AC于D,△ABC和△DBC的周長(zhǎng)分別是30cm和19cm,則△ABC的腰和底邊長(zhǎng)分別為( )
A.11cm和8cm
B.8cm和11cm
C.10cm和8cm
D.12cm和6cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com