【題目】在我們認(rèn)識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題:
(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;
(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;
(3)小明希望構(gòu)造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;
(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標(biāo)出對稱軸.
【答案】(1)1,2,3;(2)答案見解析;(3)答案見解析;(4)答案見解析
【解析】
試題(1)根據(jù)等腰三角形的性質(zhì)、矩形的性質(zhì)以及等邊三角形的性質(zhì)進(jìn)行判斷即可;
(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類似的修改方式進(jìn)行畫圖即可;
(3)長方形具有兩條對稱軸,在長方形的右側(cè)補出與左側(cè)一樣的圖形,即可構(gòu)造出一個恰好有2條對稱軸的凸六邊形;
(4)在等邊三角形的基礎(chǔ)上加以修改,即可得到恰好有3條對稱軸的凸六邊形.
試題解析:
(1)非等邊的等腰三角形有1條對稱軸,非正方形的長方形有2條對稱軸,等邊三角形有3條對稱軸,
故答案為:1,2,3.
(2)恰好有1條對稱軸的凸五邊形如圖中所示.
(3)恰好有2條對稱軸的凸六邊形如圖所示.
(4)恰好有3條對稱軸的凸六邊形如圖所示.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動,設(shè)運動時間為x(秒),△PBQ的面只為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.
(1)求證:ADBC=APBP.
(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當(dāng)∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:
如圖3,在△ABD中,AB=12,AD=BD=10.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,邊長為2的正三角形ABO的邊OB在x軸上,將△ABO繞原點O逆時針旋轉(zhuǎn)30°得到三角形OA1B1 , 則點A1的坐標(biāo)為( )
A.( ,1)
B.( ,-1)
C.(-1, )
D.(2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,請判斷AB與EF的位置關(guān)系,并說明理由.
解: ,理由如下:
∵AB∥CD,
∴∠B=∠BCD,( )
∵∠B=70°,
∴∠BCD=70°,( )
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴ + =180°,
∴EF∥ ,( )
∴AB∥EF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等邊三角形.
(1)如圖,點D在AB邊上,點E在AC邊上,BD=CE,BE與CD交于點F.試判斷BF與CF的數(shù)量關(guān)系,并加以證明;
(2)點D是AB邊上的一個動點,點E是AC邊上的一個動點,且BD=CE,BE與CD交于點F.若△BFD是等腰三角形,求∠FBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥市某學(xué)校搬遷,教師和學(xué)生的寢室數(shù)量在增加,若該校今年準(zhǔn)備建造三類不同的寢室,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2015年學(xué)校寢室數(shù)為64個,2017年建成后寢室數(shù)為121個,求2015至2017年的平均增長率;
(2)若建成后的寢室可供600人住宿,求單人間的數(shù)量;
(3)若該校今年建造三類不同的寢室的總數(shù)為180個,則該校的寢室建成后最多可供多少師生住宿?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線,點為平面上一點,連接與.
(1)如圖1,點在直線、之間,當(dāng),時,求.
(2)如圖2,點在直線、之間左側(cè),與的角平分線相交于點,寫出與之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,點落在下方,與的角平分線相交于點,與有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com