【題目】已知,MON=30°,點(diǎn)A1、A2、A3在射線ON上,點(diǎn)B1、B2B3在射線OM上,A1B1A2A2B2A3、A3B3A4均為等邊三角形,若OA1=a,則A7B7A8的邊長(zhǎng)為______

【答案】64a

【解析】

根據(jù)等腰三角形的性質(zhì)以及平行線的性質(zhì)得出A1B1A2B2A3B3,根據(jù)30°角所對(duì)直角邊等于斜邊的一半得到A2B2=2B1A2,進(jìn)而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…從而得到答案.

∵△A1B1A2是等邊三角形,∴A1B1=A2B1,∠3=4=12=60°,∴∠2=120°.

∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.

又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.

∵∠MON=1=30°,∴OA1=A1B1=a,∴A2B1=a

∵△A2B2A3、△A3B3A4是等邊三角形,∴∠11=10=60°,∠13=60°.

∵∠4=12=60°,∴A1B1A2B2A3B3,B1A2B2A3,∴∠1=6=7=30°,∠5=8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此類推:A7B7=64B1A2=64a

故答案為:64a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連接BP、EQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,F(xiàn)為AB的中點(diǎn),OF+OB=9,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)c為常數(shù)的圖象經(jīng)過點(diǎn),點(diǎn),頂點(diǎn)為點(diǎn)M,過點(diǎn)A軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.

求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo).

過該二次函數(shù)圖象上一點(diǎn)Py軸的平行線,交一邊于點(diǎn)Q,是否存在點(diǎn)P,使得以點(diǎn)P、Q、C、O為頂點(diǎn)的四邊形為平行四邊形,若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

點(diǎn)N是射線CA上的動(dòng)點(diǎn),若點(diǎn)M、C、N所構(gòu)成的三角形與相似,請(qǐng)直接寫出所有點(diǎn)N的坐標(biāo)直接寫出結(jié)果,不必寫解答過程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)點(diǎn)在第一象限及x軸、y軸上移動(dòng),在第一秒鐘,它從原點(diǎn)移動(dòng)到點(diǎn)(1,0),然后按照?qǐng)D中箭頭所示方向移動(dòng),即(00)→(1,0)→(11)→)(0,1)→(02)→……,且每秒移動(dòng)一個(gè)單位,那么第2018秒時(shí),點(diǎn)所在位置的坐標(biāo)是( ).

A. (6,44)B. (3844)C. (44,38)D. (446)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知的ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MNAB于點(diǎn)D,連接CD.CD=AC,A=50°,則∠ACB的度數(shù)為(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CA=CBCD=CE,∠ACB=DCE

1)求證:BE=AD

2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQ,PQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:

1×2×3×4+1=________

2×3×4×5+1=_______

3×4×5×6+1=_______;

4×5×6×7+1=________

2)觀察上述計(jì)算的結(jié)果,指出他們的共同特性;

3)以上特性,對(duì)于任意給出的四個(gè)連續(xù)自然數(shù)的積與1的和仍具備嗎?試證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)為每個(gè)班級(jí)配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動(dòng)開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動(dòng)停止加熱,水溫開始下降,水溫y(℃)和通電時(shí)間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動(dòng)加熱,重復(fù)上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫和時(shí)間的關(guān)系如下圖所示,回答下列問題:

(1)分別求出當(dāng)0≤x≤88<x≤a時(shí),yx之間的關(guān)系式;

(2)求出圖中a的值;

(3)下表是該小學(xué)的作息時(shí)間,若同學(xué)們希望在上午第一節(jié)下課8:20時(shí)能喝到不超過40℃的開水,已知第一節(jié)下課前無人接水,請(qǐng)直接寫出生活委員應(yīng)該在什么時(shí)間或時(shí)間段接通飲水機(jī)電源.(不可以用上課時(shí)間接通飲水機(jī)電源)

時(shí)間

節(jié)次

7:20

到校

7:45~8:20

第一節(jié)

8:30~9:05

第二節(jié)

查看答案和解析>>

同步練習(xí)冊(cè)答案