【題目】如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN=45°.
(1)如圖1,當(dāng)點M、N分別在線段BC、DC上時,請直接寫出線段BM、MN、DN之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點M、N分別在CB、DC的延長線上時,(1)中的結(jié)論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結(jié)論,并證明;
(3)如圖3,當(dāng)點M、N分別在CB、DC的延長線上時,若CN=CD=6,設(shè)BD與AM的延長線交于點P,交AN于Q,直接寫出AQ、AP的長.
【答案】(1)BM+DN=MN;(2)(1)中的結(jié)論不成立,DN﹣BM=MN.理由見解析;(3)AP=AM+PM=3.
【解析】
(1)在MB的延長線上,截取BE=DN,連接AE,則可證明△ABE≌△ADN,得到AE=AN,進一步證明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN;
(2)在DC上截取DF=BM,連接AF,可先證明△ABM≌△ADF,得出AM=AF,進一步證明△MAN≌△FAN,可得到MN=NF,從而可得到DN-BM=MN;
(3)由已知得出DN=12,由勾股定理得出AN===6 ,由平行線得出△ABQ∽△NDQ,得出====,∴=,求出AQ=2 ;由(2)得出DN-BM=MN.設(shè)BM=x,則MN=12-x,CM=6+x,在Rt△CMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM==,由平行線得出△PBM∽△PDA,得出==,,求出PM= PM=AM=,
得出AP=AM+PM=3.
(1)BM+DN=MN,理由如下:
如圖1,在MB的延長線上,截取BE=DN,連接AE,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=∠ABC=∠D=90°,
∴∠ABE=90°=∠D,
在△ABE和△ADN中,,
∴△ABE≌△ADN(SAS),
∴AE=AN,∠EAB=∠NAD,
∴∠EAN=∠BAD=90°,
∵∠MAN=45°,
∴∠EAM=45°=∠NAM,
在△AEM和△ANM中,,
∴△AEM≌△ANM(SAS),
∴ME=MN,
又∵ME=BE+BM=BM+DN,
∴BM+DN=MN;
故答案為:BM+DN=MN;
(2)(1)中的結(jié)論不成立,DN﹣BM=MN.理由如下:
如圖2,在DC上截取DF=BM,連接AF,
則∠ABM=90°=∠D,
在△ABM和△ADF中,,
∴△ABM≌△ADF(SAS),
∴AM=AF,∠BAM=∠DAF,
∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,
即∠MAF=∠BAD=90°,
∵∠MAN=45°,
∴∠MAN=∠FAN=45°,
在△MAN和△FAN中,,
∴△MAN≌△FAN(SAS),
∴MN=NF,
∴MN=DN﹣DF=DN﹣BM,
∴DN﹣BM=MN.
(3)∵四邊形ABCD是正方形,
∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,
∴∠ABM=∠MCN=90°,
∵CN=CD=6,
∴DN=12,
∴AN===6 ,
∵AB∥CD,
∴△ABQ∽△NDQ,
∴====,
∴=,
∴AQ=AN=2 ;
由(2)得:DN﹣BM=MN.
設(shè)BM=x,則MN=12﹣x,CM=6+x,
在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,
解得:x=2,
∴BM=2,
∴AM===2,
∵BC∥AD,
∴△PBM∽△PDA,
∴===,
∴PM=AM=,
∴AP=AM+PM=3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像相交于A()、B()兩點。
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點C的坐標及△AOB的面積;
(3)根據(jù)圖像直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有A、B兩個不透明袋子,分別裝有3個除顏色外完全相同的小球。其中,A袋裝有2個白球,1個紅球;B袋裝有2個紅球,1個白球。
(1)將A袋搖勻,然后從A袋中隨機取出一個小球,求摸出小球是白色的概率;
(2)小華和小林商定了一個游戲規(guī)則:從搖勻后的A,B兩袋中隨機摸出一個小球,摸出的這兩個小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝。請用列表法或畫出樹狀圖的方法說明這個游戲規(guī)則對雙方是否公平。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,我市某中學(xué)決定根據(jù)學(xué)生的興趣愛好組建課外興趣小組,因此學(xué)校隨機抽取了部分同學(xué)的興趣愛好進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:
(1)學(xué)校這次調(diào)查共抽取了 名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“戲曲”所在扇形的圓心角度數(shù)為 ;
(4)設(shè)該校共有學(xué)生2000名,請你估計該校有多少名學(xué)生喜歡書法?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織八年級學(xué)生參加了“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解大賽的成績分布情況,隨機抽取了其中若干名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,繪制如下不完整的條形統(tǒng)計圖.
漢字聽寫大賽成績分數(shù)段統(tǒng)計表
分數(shù)段 | 頻數(shù) |
2 | |
6 | |
9 | |
18 | |
15 |
漢字聽寫大賽成績分數(shù)段條形統(tǒng)計圖
(1)補全條形統(tǒng)計圖.
(2)這次抽取的學(xué)生成績的中位數(shù)在________的分數(shù)段中;這次抽取的學(xué)生成績在的分數(shù)段的人數(shù)占抽取人數(shù)的百分比是_______.
(3)若該校八年級一共有學(xué)生350名,成績在90分以上(含90分)為“優(yōu)”,則八年級參加這次比賽的學(xué)生中成績“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)過點A(3,4),直線AC與x軸交于點C(6,0),過點C作x軸的垂線BC交反比例函數(shù)圖象于點B.
(1)求k的值與B點的坐標;
(2)在平面內(nèi)有點D,使得以A,B,C,D四點為頂點的四邊形為平行四邊形,試寫出符合條件的所有D點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,已知AD=10cm,tanB=2,AE⊥BC于點E,且AE=4cm,點P是BC邊上一動點.若△PAD為直角三角形,則BP的長為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】櫻桃是我市的特色時令水果.一上市,水果店的老板用2400元購進一批櫻桃,很快售完;老板又用3700元購進第二批櫻桃,進價比第一批每千克少了11元,所購件數(shù)是第一批2的倍.
(1)第一批櫻桃進價是每千克多少元?
(2)老板以每千克50元的價格銷售第二批櫻桃,售出80%后,為了盡快售完,剩下降價促銷、要使得第二批櫻桃的銷售利潤不低于1100元,剩余的櫻桃每千克最多降價多少元銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上.
(1)將△ABC向下平移5個單位再向右平移1個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)P(a,b)是△ABC的邊AC上一點,請直接寫出經(jīng)過兩次變換后在△A2B2C2中對應(yīng)的點P2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com