【題目】如圖,在ABC中,BO、CO分別平分∠ABC、ACB.若∠BOC=110°,則∠A=_____

【答案】40°

【解析】

先根據(jù)角平分線的定義得到∠OBC=ABC,OCB=ACB,再根據(jù)三角形內(nèi)角和定理得∠BOC+OBC+OCB=180°,則∠BOC=180°﹣ABC+ACB),由于∠ABC+ACB=180°﹣A,所以∠BOC=90°+A,然后把∠BOC=110°代入計(jì)算可得到∠A的度數(shù).

解:∵BO、CO分別平分∠ABC、ACB,

∴∠OBC=ABC,OCB=ACB,

而∠BOC+OBC+OCB=180°,

∴∠BOC=180°﹣(OBC+OCB)=180°﹣ABC+ACB),

∵∠A+ABC+ACB=180°,

∴∠ABC+ACB=180°﹣A,

∴∠BOC=180°﹣(180°﹣A)=90°+A,

而∠BOC=110°,

90°+A=110°

∴∠A=40°.

故答案為40°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P在正方形ABCD的對角線AC上,正方形的邊長是a,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N.
(1)操作發(fā)現(xiàn):如圖2,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),當(dāng)PM⊥BC時(shí),四邊形PMCN是正方形.填空:①當(dāng)AP=2PC時(shí),四邊形PMCN的邊長是;②當(dāng)AP=nPC時(shí)(n是正實(shí)數(shù)),四邊形PMCN的面積是
(2)猜想論證 如圖3,改變四邊形ABCD的形狀為矩形,AB=a,BC=b,點(diǎn)P在矩形ABCD的對角線AC上,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),則 =
(3)拓展探究 如圖4,當(dāng)四邊形ABCD滿足條件:∠B+∠D=180°,∠EPF=∠BAD時(shí),點(diǎn)P在AC上,PE、PF分別交BC,CD于M、N點(diǎn),固定P點(diǎn),使△PEF繞點(diǎn)P旋轉(zhuǎn),請?zhí)骄? 的值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于下列各組條件,不能判定≌△的一組是

A. A=A′,B=B′,AB=A′B′

B. A=A′,AB=A′B′,AC=A′C′

C. A=A′,AB=A′B′,BC=B′C′

D. AB=A′B′,AC=A′C′BC=B′C′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CACB,點(diǎn)E,F在射線CD上,滿足∠BECCFA,且∠BECECBACF=180°.

(1)求證:BCE≌△CAF;

(2)試判斷線段EFBE,AF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)C,拋物線上有一動(dòng)點(diǎn)P
(1)若A(﹣2,0),C(0,﹣4)
①求拋物線的解析式;
②在①的情況下,若點(diǎn)P在第四象限運(yùn)動(dòng),點(diǎn)D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.
(2)若點(diǎn)P在第一象限運(yùn)動(dòng),且a<0,連接AP、BP分別交y軸于點(diǎn)E、F,則問 是否與a,c有關(guān)?若有關(guān),用a,c表示該比值;若無關(guān),求出該比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)P,Q分別為AD,CD邊上的點(diǎn),且DQ=CP,連接BQ,AP.求證:BQ=AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是小華同學(xué)一個(gè)學(xué)期數(shù)學(xué)成績的記錄.根據(jù)表格提供的信息,回答下列的問題:

考試類別

平時(shí)考試

期中考試

期末考試

第一單元

第二單元

第三單元

第四單元

成績(分)

85

78

90

91

90

94

(1)小明6次成績的眾數(shù)是   ,中位數(shù)是   

(2)求該同學(xué)這個(gè)同學(xué)這一學(xué)期平時(shí)成績的平均數(shù);

(3)總評成績權(quán)重規(guī)定如下:平時(shí)成績占20%,期中成績占30%,期末成績占50%,請計(jì)算出小華同學(xué)這一個(gè)學(xué)期的總評成績是多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=6 cm,AC=8 cm,將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn)處,那么△ADC′的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10)已知△ABC是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.

(1)如圖①,點(diǎn)D在線段BC上移動(dòng)時(shí),直接寫出∠BAD和∠CAE的大小關(guān)系;

(2)如圖②,點(diǎn)D在線段BC的延長線上移動(dòng)時(shí),猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大。蝗糇兓,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案