【題目】如圖,正方形ABCD的邊長(zhǎng)為2,以BC為邊向正方形內(nèi)作等邊△BCE,連接AE、DE.
(1)請(qǐng)直接寫出∠AEB的度數(shù),∠AEB= ;
(2)將△AED沿直線AD向上翻折,得△AFD.求證:四邊形AEDF是菱形;
(3)連接EF,交AD于點(diǎn) O,試求EF的長(zhǎng)?
【答案】(1)75°;(2)證明見解析;(3)
【解析】
試題(1)由正方形和等邊三角形的性質(zhì)得出∠ABE=30°,AB=BE,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可求出∠AEB的度數(shù);
(2)先判斷出△ABE≌△DCE,得到AE=ED,再由翻折的性質(zhì)即可得出結(jié)論;
(3)先由等邊三角形的性質(zhì)求出EH,進(jìn)而得出OE,借助(2)的結(jié)論即可求出EF.
試題解析:(1)∵四邊形ABCD是正方形,
∴∠ABC=∠BCD=90°,AB=BC=CD,
∵△EBC是等邊三角形,
∴BE=BC,∠EBC=60°,
∴∠ABE=90°-60°=30°,AB=BE,
∴∠AEB=∠BAE=(180°-30°)=75°;
(2)∵四邊形ABCD為正方形,
∴∠ABC=∠BCD=90°,AB=CD,
∵△BCE為等邊三角形,
∴∠BCE=∠EBC=60°,BE=EC,
∴∠ABE=∠DCE=90°-60°=30°,
∴△ABE≌△DCE,
∴AE=ED,
∵△AED沿著AD翻折為△AFD,
∴AE=ED=AF=FD,
∴四邊形AEDF是菱形;
(3)如圖,
由翻折知,AE=AF,∠FAO=∠EAO,
∴EF⊥AD,過(guò)點(diǎn)E作EH⊥BC于H,
在等邊三角形BCE中,BC=2,
∴EH=BC=,
∴EO=OH-EH=AB-EH=2-,
∴EF=2EO=2(2-)=4-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(2,3)和點(diǎn)B(0,2),點(diǎn)A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)45°,交反比例函數(shù)圖象于點(diǎn)C,則點(diǎn)C的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點(diǎn)A處.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長(zhǎng)是( )
A. 2海里 B. 2sin 55°海里
C. 2cos 55°海里 D. 2tan 55°海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長(zhǎng)為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;
②連接MN,分別交AB、AC于點(diǎn)D、O;
③過(guò)C作CE∥AB交MN于點(diǎn)E,連接AE、CD.
則四邊形ADCE的周長(zhǎng)為( 。
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明的手機(jī)沒電了,現(xiàn)有一個(gè)只含A,B,C,D四個(gè)同型號(hào)插座的插線板(如圖,假設(shè)每個(gè)插座都適合所有的充電插頭,且被選中的可能性相同),請(qǐng)計(jì)算:
(1)若小明隨機(jī)選擇一個(gè)插座插入,則插入A的概率為 ;
(2)現(xiàn)小明對(duì)手機(jī)和學(xué)習(xí)機(jī)兩種電器充電,請(qǐng)用列表或畫樹狀圖的方法表示出兩個(gè)插頭插入插座的所有可能情況,并計(jì)算兩個(gè)插頭插在相鄰插座的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠BCD是鈍角,AB=AD,BD平分∠ABC.若CD=3,BD=2,sin∠DBC=,求對(duì)角線AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一張面積為100cm2的正方形紙片,其正投影的面積可能是100cm2嗎?可能是80cm2嗎?可能是120cm2嗎?試確定這張正方形紙片的正投影面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,,射線,點(diǎn)從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.
(1)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),_________,當(dāng)點(diǎn)在線段的延長(zhǎng)線上運(yùn)動(dòng)時(shí),_________(請(qǐng)用含的式子表示);
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形時(shí),求的值;
(3)求當(dāng)_________時(shí),,兩點(diǎn)間的距離最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn).
Ⅰ試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
Ⅱ連OB,在x軸上取點(diǎn)C,使,并求的面積;
Ⅲ直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com