【題目】如圖,AB是⊙O的直徑,⊙O交BC于D,過(guò)D作⊙O的切線DE交AC于E,且DE⊥AC,由上述條件,你能推出的正確結(jié)論有:(要求:不再標(biāo)注其他字母,找結(jié)論的過(guò)程中所連輔助線不能出現(xiàn)在結(jié)論中,不寫(xiě)推理過(guò)程,至少寫(xiě)出4個(gè)結(jié)論,結(jié)論不能類同).

【答案】∠ADB=∠AED=∠CED=90°,△ADE∽△ABD,∠ADE=∠B,∠CAD=∠BAD
【解析】解:由弦切角定理知,∠EDA=∠B,

∵DE⊥AC,AB是⊙O的直徑,

∴∠DEA=∠ADB=90°,

∵∠EDA=∠B,

∴△ADE∽△ABD;

∵AB是直徑,

∴∠ADB=∠ADC=∠DEA=90°,

∠ADB=∠AED=∠CED=90°,

∴△ADE∽△ABD,∠ADE=∠B,∠CAD=∠BAD.

【考點(diǎn)精析】本題主要考查了圓周角定理和切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列條件中,①∠A+B=C ②∠ABC=123; ③∠A=B=C

④∠A=B=2C; ⑤∠A=2B=3C,能確定ABC為直角三角形的條件有(  。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題的提出:n個(gè)平面最多可以把空間分割成多少個(gè)部分?
問(wèn)題的轉(zhuǎn)化:由n上面問(wèn)題比較復(fù)雜,所以我們先來(lái)研究跟它類似的一個(gè)較簡(jiǎn)單的問(wèn)題:
n條直線最多可以把平面分割成多少個(gè)部分?
如圖1,很明顯,平面中畫(huà)出1條直線時(shí),會(huì)得到1+1=2個(gè)部分;所以,1條直線最多可以把平面分割成2個(gè)部分;
如圖2,平面中畫(huà)出第2條直線時(shí),新增的一條直線與已知的1條直線最多有1個(gè)交點(diǎn),這個(gè)交點(diǎn)會(huì)把新增的這條直線分成2部分,從而多出2個(gè)部分,即總共會(huì)得到1+1+2=4個(gè)部分,所以,2條直線最多可以把平面分割成4個(gè)部分;
如圖3,平面中畫(huà)出第3條直線時(shí),新增的一條直線與已知的2條直線最多有2個(gè)交點(diǎn),這2個(gè)交點(diǎn)會(huì)把新增的這條直線分成3部分,從而多出3個(gè)部分,即總共會(huì)得到1+1+2+3=7個(gè)部分,所以,3條直線最多可以把平面分割成7個(gè)部分;
平面中畫(huà)出第4條直線時(shí),新增的一條直線與已知的3條直線最多有3個(gè)交點(diǎn),這3個(gè)交點(diǎn)會(huì)把新增的這條直線分成4部分,從而多出4個(gè)部分,即總共會(huì)得到1+1+2+3+4=11個(gè)部分,所以,4條直線最多可以把平面分割成11個(gè)部分;…

(1)請(qǐng)你仿照前面的推導(dǎo)過(guò)程,寫(xiě)出“5條直線最多可以把平面分割成多少個(gè)部分”的推導(dǎo)過(guò)程(只寫(xiě)推導(dǎo)過(guò)程,不畫(huà)圖);
(2)根據(jù)遞推規(guī)律用n的代數(shù)式填空:n條直線最多可以把平面分割成個(gè)部分.
問(wèn)題的解決:借助前面的研究,我們繼續(xù)開(kāi)頭的問(wèn)題;n個(gè)平面最多可以把空間分割成多少個(gè)部分?
首先,很明顯,空間中畫(huà)出1個(gè)平面時(shí),會(huì)得到1+1=2個(gè)部分;所以,1個(gè)平面最多可以把空間分割成2個(gè)部分;
空間中有2個(gè)平面時(shí),新增的一個(gè)平面與已知的1個(gè)平面最多有1條交線,這1條交線會(huì)把新增的這個(gè)平面最多分成2部分,從而多出2個(gè)部分,即總共會(huì)得到1+1+2=4個(gè)部分,所以,2個(gè)平面最多可以把空間分割成4個(gè)部分;
空間中有3個(gè)平面時(shí),新增的一個(gè)平面與已知的2個(gè)平面最多有2條交線,這2條交線會(huì)把新增的這個(gè)平面最多分成4部分,從而多出4個(gè)部分,即總共會(huì)得到1+1+2+4=8個(gè)部分,所以,3個(gè)平面最多可以把空間分割成8個(gè)部分;
空間中有4個(gè)平面時(shí),新增的一個(gè)平面與已知的3個(gè)平面最多有3條交線,這3條交線會(huì)把新增的這個(gè)平面最多分成7部分,從而多出7個(gè)部分,即總共會(huì)得到1+1+2+4+7=15個(gè)部分,所以,4個(gè)平面最多可以把空間分割成15個(gè)部分;
空間中有5個(gè)平面時(shí),新增的一個(gè)平面與已知的4個(gè)平面最多有4條交線,這4條交線會(huì)把新增的這個(gè)平面最多分成11部分,而從多出11個(gè)部分,即總共會(huì)得到1+1+2+4+7+11=26個(gè)部分,所以,5個(gè)平面最多可以把空間分割成26個(gè)部分;…
(3)請(qǐng)你仿照前面的推導(dǎo)過(guò)程,寫(xiě)出“6個(gè)平面最多可以把空間分割成多少個(gè)部分?”的推導(dǎo)過(guò)程(只寫(xiě)推導(dǎo)過(guò)程,不畫(huà)圖);
(4)根據(jù)遞推規(guī)律填寫(xiě)結(jié)果:10個(gè)平面最多可以把空間分割成個(gè)部分;
(5)設(shè)n個(gè)平面最多可以把空間分割成Sn個(gè)部分,設(shè)n﹣1個(gè)平面最多可以把空間分割成Sn1個(gè)部分,前面的遞推規(guī)律可以用Sn1和n的代數(shù)式表示Sn;這個(gè)等式是Sn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形的內(nèi)切圓的切點(diǎn)將該圓周分為5:9:10三條弧,則此三角形的最小的內(nèi)角為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|x1|的圖象與性質(zhì)進(jìn)行了研究,下面是小慧的研究過(guò)程,請(qǐng)補(bǔ)充完成:

1)函數(shù)y=|x1|的自變量x的取值范圍是   ;

2)列表,找出yx的幾組對(duì)應(yīng)值.其中,b   ;

x

1

0

2

3

y

b

0

2

3)在平面直角坐標(biāo)系xoy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫(huà)出該函數(shù)的圖象;

4)寫(xiě)出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,回答問(wèn)題
一艘輪船以20海里/時(shí)的速度由西向東航行,途中接到臺(tái)風(fēng)警報(bào),臺(tái)風(fēng)中心正以40海里/時(shí)的速度由南向北移動(dòng),距臺(tái)風(fēng)中心20 海里的圓形區(qū)域(包括邊界)都屬臺(tái)風(fēng)區(qū),當(dāng)輪船到A處時(shí),測(cè)得臺(tái)風(fēng)中心移到位于點(diǎn)A正南方向B處,且AB=100海里.

(1)若這艘輪船自A處按原速度和方向繼續(xù)航行,在途中會(huì)不會(huì)遇到臺(tái)風(fēng)?若會(huì),試求輪船最初遇到臺(tái)風(fēng)的時(shí)間;若不會(huì),說(shuō)明理由;
(2)現(xiàn)輪船自A處立即提高船速,向位于北偏東60°方向,相距60海里的D港駛?cè),為使臺(tái)風(fēng)到來(lái)之前,到達(dá)D港,問(wèn)船速至少應(yīng)提高多少(提高的船速取整數(shù), ≈3.6)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算的結(jié)果中,是正數(shù)的是( )
A.(﹣2007)1
B.(﹣1)2007
C.(﹣1)×(﹣2007)
D.(﹣2007)÷2007

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(生活常識(shí))

射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等。如圖 1,MN 是平面鏡,若入射光線 AO 與水平鏡面夾角為∠1,反射光線 OB 與水平鏡面夾角為∠2,則∠1=2 .

(現(xiàn)象解釋)

如圖 2,有兩塊平面鏡 OM,ON,且 OMON,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD.求證 ABCD.

(嘗試探究)

如圖 3,有兩塊平面鏡 OM,ON,且∠MON =55 ,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD,光線 AB CD 相交于點(diǎn) E,求∠BEC 的大小.

(深入思考)

如圖 4,有兩塊平面鏡 OM,ON,且∠MON α ,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD,光線 AB CD 所在的直線相交于點(diǎn) E,∠BED=β , α β 之間滿足的等量關(guān)系是 .(直接寫(xiě)出結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案