【題目】如圖1是我們常用的折疊式小刀,圖2中刀柄外形是一個(gè)矩形挖去一個(gè)小半圓,其中刀片的兩條邊緣線可看成兩條平行的線段,轉(zhuǎn)動(dòng)刀片時(shí)會(huì)形成如圖2所示的∠1與∠2,則∠1與∠2的度數(shù)和是度.

【答案】90
【解析】解:如圖2,AB∥CD,∠AEC=90°,
作EF∥AB,則EF∥CD,
所以∠1=∠AEF,∠2=∠CEF,
所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.
故答案為90.

如圖2,AB∥CD,∠AEC=90°,作EF∥AB,根據(jù)平行線的傳遞性得到EF∥CD,則根據(jù)平行線的性質(zhì)得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90°本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)幾何體是由一些大小相同的小正方塊擺成的,三視圖如圖所示,則組成這幾何體的小正方塊有(  )

A.4個(gè)
B.5個(gè)
C.6個(gè)
D.7個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),點(diǎn)G、F在BC邊上,四邊形DEFG是正方形.若DE=2cm,則AC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用木條制成如圖的形式,A、B、C三點(diǎn)釘上釘子,在D和D′處加上粉筆,當(dāng)用D′畫圖時(shí),在D處的筆同時(shí)也畫出一個(gè)圖形.請(qǐng)問:這樣畫出的兩個(gè)圖形是相似圖形嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于P(n,2),與x軸交于A(﹣4,0),與y軸交于C,PB⊥x軸于點(diǎn)B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象有一點(diǎn)D,使得以B、C、P、D為頂點(diǎn)的四邊形是菱形,求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,某學(xué)習(xí)小組對(duì)有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(xiàn)(不包括線段的端點(diǎn)).

(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;
(3)深入探究
如圖3,若AD=3AB,探究得: 的值為常數(shù)t,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)不透明的口袋,甲口袋中裝有3個(gè)分別標(biāo)有數(shù)字1,2,3的小球,乙口袋中裝有2個(gè)分別標(biāo)有數(shù)字4,5的小球,它們的形狀、大小完全相同,現(xiàn)隨機(jī)從甲口袋中摸出一個(gè)小球記下數(shù)字,再?gòu)囊铱诖忻鲆粋(gè)小球記下數(shù)字.
(1)請(qǐng)用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)求出兩個(gè)數(shù)字之和能被3整除的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+5經(jīng)過點(diǎn)M(1,3)和N(3,5)

(1)試判斷該拋物線與x軸交點(diǎn)的情況;
(2)平移這條拋物線,使平移后的拋物線經(jīng)過點(diǎn)A(﹣2,0),且與y軸交于點(diǎn)B,同時(shí)滿足以A、O、B為頂點(diǎn)的三角形是等腰直角三角形,請(qǐng)你寫出平移過程,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案