19、如圖△ABC中∠A=90°,以AB為直徑的⊙O交BC于D,E為AC邊中點(diǎn),求證:DE是⊙O的切線.
分析:要想證DE是⊙O的切線,只要連接OD,求證∠ODE=90°即可.
解答:如圖△ABC中∠A=90°,以AB為直徑的⊙O交BC于D,E為AC邊中點(diǎn),
求證:DE是⊙O的切線.
證明:連接AD、DO;
∵AB是⊙O的直徑,
∴∠ADB=∠ADC=90°.
∵E是AC的中點(diǎn),
∴DE=AE(直角三角形中斜邊中線等于斜邊一半),
∴∠EAD=∠EDA.
∵OA=OD,
∴∠DAO=∠ADO,
∴∠EDO=∠EDA+∠ADO=∠EAD+∠DAO=∠CAB=90°.
∴OD⊥DE.
DE是⊙O的切線.
點(diǎn)評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE過點(diǎn)O交AB于D,交AC于E,且DE∥BC.則△ADE周長為
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖△ABC中,∠C=90°,AC=6,AB=10,D是BC邊的中點(diǎn),以AD上一點(diǎn)O為圓心的圓與AB,BC都相切,則⊙O的半徑為(  )
A、
12
7
B、
1
5
C、
5
3
D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南崗區(qū)一模)如圖△ABC中,DE∥BC,CD、BE交于點(diǎn)F,若DF=1,CF=3,AD=2,則線段BD的長等于
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖△ABC中,∠A=78°,AB=AC,P為△ABC內(nèi)一點(diǎn),連BP,CP,使∠PBC=9°,∠PCB=30°,連PA,則∠BAP的度數(shù)為
69°
69°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖△ABC中,∠ABC=20°,外角∠ABF的平分線與CA邊的延長線交于點(diǎn)D,外角∠EAC的平分線交BC邊的延長線于點(diǎn)H,若∠BDA=∠DAB,則∠AHC=( 。┒龋

查看答案和解析>>

同步練習(xí)冊答案