【題目】如圖,將等邊三角形ABC折疊,使得點(diǎn)A落在BC邊上的點(diǎn)D處,折痕為EF,點(diǎn)E,F分別在AB和AC邊上.若AB=6,BD=2,則AE:AF的值為_____.
【答案】
【解析】
由已知求得CD=3a,根據(jù)等邊三角形的性質(zhì)和折疊的性質(zhì)可得:BE+DE+BD=8,DF+CF+CD=10,再證明△BED∽△CDF,由相似三角形周長(zhǎng)的比等于相似比,即可得出結(jié)果.
∵△ABC是等邊三角形,
∴BC=AB=AC=6,∠ABC=∠ACB=∠BAC=60°,
∵BD=2,
∴CD=4,
由折疊的性質(zhì)可知:AE=DE,AF=DF,∠EDF=∠A=60°,
∴BE+DE+BD=AB+BD=8,DF+CF+CD=AC+CD=10,
∵∠EDF=∠BAC=∠ABC=60°,
∴∠FDC+∠EDB=∠BED+∠EBD=120°,
∴∠FDC=∠BED,
∵∠B=∠C=60°,
∴△BED∽△CDF,
∴(BE+DE+BD):(DF+CF+CD)=DE:DF=AE:AF,
∴
故答案為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(-1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若點(diǎn)A(-3,y1)、點(diǎn)B(,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y2<y3;(5)若方程a(x+1)(x-5)=c的兩根為x1和x2,且x1<x2,則x1<-1<5<x2,其中正確的結(jié)論有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,點(diǎn)O是邊BC上一點(diǎn),以O為圓心,OC為半徑的⊙O,與邊AD只有一個(gè)公共點(diǎn),則OC的取值范圍是( 。
A. 4<OC≤B. 4≤OC≤C. 4<OCD. 4≤OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是邊CD上的點(diǎn),且CE=4,過(guò)點(diǎn)E作CD的垂線,并在垂線上截取EF=3,連接CF.將△CEF繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為a.
(1)問(wèn)題發(fā)現(xiàn)
當(dāng)a=0°時(shí),AF= ,BE= ,= ;
(2)拓展探究
試判斷:當(dāng)0°≤a°<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△CEF旋轉(zhuǎn)至A,E,F三點(diǎn)共線時(shí),直接寫(xiě)出線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點(diǎn)C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國(guó)古代算法的扛鼎之作.《九章算術(shù)》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問(wèn)燕、雀一枚各重幾何?”譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤.問(wèn)雀、燕毎只各重多少斤?”設(shè)每只雀重x斤,每只燕重y斤,可列方程組為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:點(diǎn)P(a,b)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P′,以PP′為邊作等邊△PP′C,則稱點(diǎn)C為P的“等邊對(duì)稱點(diǎn)”;
(1)若P(1,3),求點(diǎn)P的“等邊對(duì)稱點(diǎn)”的坐標(biāo).
(2)平面內(nèi)有一點(diǎn)P(1,2),若它其中的一個(gè)“等邊對(duì)稱點(diǎn)”C在第四象限時(shí),請(qǐng)求此C點(diǎn)的坐標(biāo);
(3)若P點(diǎn)是雙曲線y=(x>0)上一動(dòng)點(diǎn),當(dāng)點(diǎn)P的“等邊對(duì)稱點(diǎn)”點(diǎn)C在第四象限時(shí),
①如圖(1),請(qǐng)問(wèn)點(diǎn)C是否也會(huì)在某一函數(shù)圖象上運(yùn)動(dòng)?如果是,請(qǐng)求出此函數(shù)的解析式;如果不是,請(qǐng)說(shuō)明理由.
②如圖(2),已知點(diǎn)A (1,2),B (2,1),點(diǎn)G是線段AB上的動(dòng)點(diǎn),點(diǎn)F在y軸上,若以A、G、F、C這四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)C的縱坐標(biāo)yc的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,AD平分∠CAE交⊙O于點(diǎn)D,且AE⊥CD,垂足為點(diǎn)E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+4x+c過(guò)點(diǎn)A(6,0)、B(3,),與y軸交于點(diǎn)C.聯(lián)結(jié)AB并延長(zhǎng),交y軸于點(diǎn)D.
(1)求該拋物線的表達(dá)式;
(2)求△ADC的面積;
(3)點(diǎn)P在線段AC上,如果△OAP和△DCA相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com