16、如圖,拋物線C1:y=x2-4x的對(duì)稱(chēng)軸為直線x=a,將拋物線C1向上平移5個(gè)單位長(zhǎng)度得到拋物線C2,則圖中的兩條拋物線、直線x=a與y軸所圍成的圖形(圖中陰影部分)的面積為
10
分析:先求出C1的頂點(diǎn)坐標(biāo),再根據(jù)平移的性質(zhì)求出C1的頂點(diǎn)坐標(biāo),E的坐標(biāo),可見(jiàn)紅色部分面積等于黃色部分的面積,即求出平行四邊形OGFE的面積即可.
解答:解:在拋物線C1:y=x2-4x中,
C1的頂點(diǎn)G的坐標(biāo)為(2,-4),
由于拋物線C1向上平移5個(gè)單位長(zhǎng)度得到拋物線C2,
故F點(diǎn)坐標(biāo)為(2,1),
E點(diǎn)坐標(biāo)為(0,5).
故平行四邊形OGFE的面積為5×2=10.
故答案為:10.
點(diǎn)評(píng):此題考查了二次函數(shù)的圖象與幾何變換,根據(jù)拋物線的圖象上點(diǎn)的坐標(biāo)特征,確定平行四邊形的EOGF的面積是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對(duì)稱(chēng);拋物線C1,C3關(guān)于y軸對(duì)稱(chēng).拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個(gè)點(diǎn)中,四個(gè)點(diǎn)可以連接成一個(gè)四邊形,請(qǐng)你用字母寫(xiě)出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫(xiě)一個(gè),寫(xiě)錯(cuò)、多寫(xiě)記0分)
(2)證明其中任意一個(gè)特殊四邊形;
(3)寫(xiě)出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線c1:y=ax2-2ax-c與x軸交于A、B,且AB=6,與y軸交于C(0,-4 ).
(1)求拋物線c1的解析式;
(2)問(wèn)拋物線c1上是否存在P、Q(點(diǎn)P在點(diǎn)Q的上方)兩點(diǎn),使得以A、C、P、Q為頂點(diǎn)的四邊形為直角梯形,若存在,求P、Q兩點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)拋物線c2與拋物線c1關(guān)于x軸對(duì)稱(chēng),直線x=m分別交c1、c2于D、E兩點(diǎn),直線x=n分別交c1、c2于M、N兩點(diǎn),若四邊形DMNE為平行四邊形,試判斷m和n間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0),
(1)求拋物線C1的解析式;
(2)如圖1,將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過(guò)點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P,求△DBP的面積
(3)如圖2,連接AP,過(guò)點(diǎn)B作BC⊥AP于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長(zhǎng)交BC于點(diǎn)E,連接BQ并延長(zhǎng)交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線C1:y=ax2+bx-1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.

(1)求拋物線C1的解析式;
(2)若點(diǎn)D為拋物線C1上任意一點(diǎn),且四邊形ACBD為直角梯形,求點(diǎn)D的坐標(biāo);
(3)若將拋物線C1先向上平移1個(gè)單位,再向右平移2個(gè)單位得到拋物線C2,直線l1是第一、三象限的角平分線所在的直線.若點(diǎn)P是拋物線C2對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),直線l2:x=t平行于y軸,且分別與拋物線C2和直線l1交于點(diǎn)D、E兩點(diǎn).是否存在直線l2,使得△DEP是以DE為直角邊的等腰直角三角形?若存在求出t的值;若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案