【題目】已知:如圖,AB=AC=20,BC=32,D為BC邊上一點,∠DAC=90°.求BD的長.
【答案】解:如圖作AM⊥BC于M.
∵AB=AC=20,BC=23,AM⊥BC,
∴BM=CM=16,
∵∠C=∠C,∠AMC=∠CAD,
∴△CAM∽△CDA,
∴,
∴,
∴CD=25,
∴BD=BC﹣CD=32﹣25=7.
【解析】作AM⊥BC于M,則BM=CM=16,利用△CAM∽△CDA得 , 求出CD即可解決問題.
【考點精析】利用等腰三角形的性質和相似三角形的判定與性質對題目進行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數學 來源: 題型:
【題目】解決問題.
學校要購買A,B兩種型號的足球,按體育器材門市足球銷售價格(單價)計算:若買2個A型足球和3個B型足球,則要花費370元,若買3個A型足球和1個B型足球,則要花費240元.
(1)求A,B兩種型號足球的銷售價格各是多少元/個?
(2)學校擬向該體育器材門市購買A,B兩種型號的足球共20個,且費用不低于1300元,不超過1500元,則有哪幾種購球方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】4月12號上映的《速度與激情7》在短短兩周票房就突破了15.6億,成為開年第一部現象級影片.該片已經打破了所有進口影片票房紀錄.15.6億用科學記數法表示是( 。
A. 15.6×108B. 1.56×108C. 1.56×109D. 156×108
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元
(1) 求甲、乙兩種商品每件的進價分別是多少元?
(2) 商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數量不少于乙種商品數量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com