【題目】(如圖1,等邊△ABC中,DAB邊上的點(diǎn),以CD為一邊,向上作等邊△EDC,連接AE.

(1)求證:△DBC≌△EAC;

(2)求證:AE∥BC;

(3)如圖2, D在邊BA的延長(zhǎng)線上,AB=6,AD=2,試求△ABC與△EAC面積的比值.

【答案】(1)詳見(jiàn)解析,(2)詳見(jiàn)解析,(3).

【解析】

1)已知的條件有AC=BC,CE=CD,我們發(fā)現(xiàn)∠BCD和∠ACE都是60°減去一個(gè)∠ACD,因此兩三角形全等的條件就都湊齊了(SAS);
(2)要證AEBC,關(guān)鍵是證∠EAC=ACB,由于∠ACB=ACB,那么關(guān)鍵是證∠EAC=ACB,根據(jù)(1)的全等三角形,我們不難得出這兩個(gè)角相等,也就得出了證平行的條件.

(3)同(1)(2)的思路完全相同,也是通過(guò)先證明BCDACE全等,即可得到ABCEAC面積的比值.

(1)證明:∵∠ACB=60°,DCE=60°,

∴∠BCD=60°ACD,ACE=60°ACD,

∴∠BCD=ACE,

DBCEAC中,

,

DBCEAC(SAS),

(2)DBCEAC,

∴∠EAC=B=60°,

又∠ACB=60°,

∴∠EAC=ACB,

AEBC;

(3)結(jié)論:AEBC,

理由:∵ABC、EDC為等邊三角形,

BC=AC,DC=CE,BCA=DCE=60°,

BCA+ACD=DCE+ACD,即∠BCD=ACE,

DBCEAC中,

,

DBCEAC(SAS),

∴∠EAC=B=60°,AE=BD

又∠ACB=60°,

∴∠EAC=ACB,

AEBC;

設(shè)AE,BC兩平行線間的距離為h

AB=6,AD=2,

SABC=BCh=×6h=3h,

SACE=AEh=×8h=4h

SABCSAEC=

ABCEAC面積的比值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:我們把平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l(l不經(jīng)過(guò)點(diǎn)F)距離相等的點(diǎn)的軌跡(滿足條件的所有點(diǎn)所組成的圖形)叫做拋物線.點(diǎn)F叫做拋物線的焦點(diǎn),直線l叫做拋物線的準(zhǔn)線.
(1)已知拋物線的焦點(diǎn)F(0, ),準(zhǔn)線l: ,求拋物線的解析式;
(2)已知拋物線的解析式為:y=x2﹣n2 , 點(diǎn)A(0, )(n≠0),B(1,2﹣n2),P為拋物線上一點(diǎn),求PA+PB的最小值及此時(shí)P點(diǎn)坐標(biāo);
(3)若(2)中拋物線的頂點(diǎn)為C,拋物線與x軸的兩個(gè)交點(diǎn)分別是D、E,過(guò)C、D、E三點(diǎn)作⊙M,⊙M上是否存在定點(diǎn)N?若存在,求出N點(diǎn)坐標(biāo)并指出這樣的定點(diǎn)N有幾個(gè);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷(xiāo)市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷(xiāo)售,最后剩下50件按八折優(yōu)惠賣(mài)出,如果兩批襯衫全部售完后利潤(rùn)不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E∠AOB的平分線上的一點(diǎn),EC⊥OA,ED⊥OB,垂足分別是CD.求證:OE垂直平分CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)由傳感器A控制的燈,要裝在門(mén)上方離地面4.5m的墻上,任何東西只要移至該燈5m5m內(nèi),燈就會(huì)自動(dòng)發(fā)光,小明身高1.5m,他走到離墻_______的地方燈剛好發(fā)光.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AE﹕EB=1﹕2,

(1)求△AEF與△CDF的周長(zhǎng)的比;
(2)如果SAEF=5cm2 , 求SCDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧波火車(chē)站北廣場(chǎng)將于2015年底投入使用,計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司開(kāi)發(fā)處一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6/件,該產(chǎn)品在正式投放市場(chǎng)前通過(guò)代銷(xiāo)點(diǎn)進(jìn)行了為期一個(gè)月(30)的試銷(xiāo)售,售價(jià)為10/件,工作人員對(duì)銷(xiāo)售情況進(jìn)行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線ABC表示日銷(xiāo)售量y()與銷(xiāo)售時(shí)間x()之間的函數(shù)關(guān)系.

(1)yx之間的函數(shù)表達(dá)式,并寫(xiě)出x的取值范圍;

(2)若該節(jié)能產(chǎn)品的日銷(xiāo)售利潤(rùn)為W(),求Wx之間的函數(shù)表達(dá)式,并求出日銷(xiāo)售利潤(rùn)不超過(guò)1040元的天數(shù)共有多少天?

(3)5≤x≤17,直接寫(xiě)出第幾天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y= x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1、A2、A3,…x軸上,點(diǎn)B1、B2、B3,…在直線l上.若OB1A,A1B2A2,A2B3A3,…均為等邊三角形,則A5B6A6的面積是__

查看答案和解析>>

同步練習(xí)冊(cè)答案