【題目】如圖①,點(diǎn)O是線段AD上一動點(diǎn)(不與點(diǎn)A、D重合),分別以AO和DO為邊在AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連結(jié)AC、BD相交于點(diǎn)E,連結(jié)OE.
(1)當(dāng)點(diǎn)O為AD的中點(diǎn)時,求∠DEA的度數(shù);
(2)在(1)的條件下,△ADE是軸對稱圖形嗎?如果是,指出它的對稱軸;如果不是,說明理由;
(3)當(dāng)點(diǎn)O不在AD的中點(diǎn)時,求證EO平分∠DEA.
圖① 圖②
【答案】(1)∠DEA=120°(2)△ADE是軸對稱圖形,它的對稱軸是直線OE(3)見解析
【解析】
(1)根據(jù)已知三角形OAB和三角形OCD為等邊三角形,AD=OD,可知,∠BAO=60°即可求出∠BDA 的度數(shù),同理可求出∠CAD 的度數(shù),后可得出∠DEA的度數(shù).
(2)根據(jù)已知條件可以證明ΔEDO≌ΔEAO,即可得出△ADE是軸對稱圖形,它的對稱軸是直線OE .
(3)根據(jù)已知條件可證ΔAOC≌ΔBOD,結(jié)合三角形面積公式可知點(diǎn)O到BD,AC的距離相等,即可證得EO平分∠DEA.
(1)為等邊三角形且點(diǎn)O為AD的中點(diǎn)
根據(jù)三角函數(shù)可知,即
同理可求得
三角形內(nèi)角和為,且,
(2)為等邊三角形且點(diǎn)O為AD的中點(diǎn), ,
可證ΔEDO≌ΔEAO(SAS)
可得出△ADE是軸對稱圖形,它的對稱軸是直線OE .
(3)為等邊三角形
∴可得OD=OC,OB=OA,
∴可證△AOC≌△BOD(SAS)
∴,AC=BD
,AC=BD
∴點(diǎn)O到AC、BD的距離相等(兩個三角形全等,且底相等,高必然相等)
∴點(diǎn)O在∠DEA的角平分線上
即EO平分∠DEA
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BC=3,D為AC延長線上一點(diǎn),AC=3CD,過點(diǎn)D作DH∥AB,交BC的延長線于點(diǎn)H.
(1)求BD·cos∠HBD的值;
(2)若∠CBD=∠A,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi)由極點(diǎn)、極軸和極徑組成的坐標(biāo)系叫做極坐標(biāo)系.如圖,在平面上取定一點(diǎn)O稱為極點(diǎn);從點(diǎn)O出發(fā)引一條射線Ox稱為極軸;線段OP的長度稱為極徑.點(diǎn)P的極坐標(biāo)就可以用線段OP的長度以及從Ox轉(zhuǎn)動到OP的角度(規(guī)定逆時針方向轉(zhuǎn)動角度為正)來確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點(diǎn)P關(guān)于點(diǎn)O成中心對稱的點(diǎn)Q的極坐標(biāo)表示不正確的是( )
A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖直線的解析式為y=x+1,直線的解析式為;這兩個圖象交于y軸上一點(diǎn)C,直線與x軸的交點(diǎn)B(2,0).
(1)求a、b的值;
(2)動點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設(shè)移動時間為t秒,當(dāng)△PAC為等腰三角形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(-1,4),B(4,2),C(-1,0)三點(diǎn).
(1)點(diǎn)A關(guān)于y軸的對稱點(diǎn)A′ 的坐標(biāo)為 ,點(diǎn)B關(guān)于x軸的對稱點(diǎn)B′ 的坐標(biāo)為 ,線段AC的垂直平分線與y軸的交點(diǎn)D的坐標(biāo)為 ;
(2)求(1)中的△A′ B′ D的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用同樣規(guī)格的黑白兩種顏色的正方形,按如圖①的方式拼圖,請根據(jù)圖中的信息完成下列的問題
(1)在圖②中用了___________塊黑色正方形,在圖③中用了_____________塊黑色正方形;
(2)按如圖的規(guī)律繼續(xù)鋪下去,那么第個圖形要用____________塊黑色正方形;
(3)如果有足夠多的白色正方形,能不能恰好用完塊黑色正方形,拼出具有以上規(guī)律的圖形?如果可以請說明它是第幾個圖形;如果不能,說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:已知,如圖,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD
求證:∠EGF=90°
證明:∵HG∥AB(已知)
∴∠1=∠3(__________________________)
又∵HG∥CD(已知)
∴∠2=∠4(_______________________________)
∵AB∥CD(已知)
∴∠BEF+___________=180°(_____________________)
又∵EG平分∠BEF,F(xiàn)G平分∠EFD (已知)
∴∠1=(______)∠BEF,∠2=(______)∠EFD (______________________)
∴∠1+∠2=(________) (∠BEF +∠EFD)=(____________)
∴∠3+∠4=90°(_______________________)即∠EGF=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠MON=40°,OE平分∠MON,A,B,C分別是射線OM,OE,ON上的動點(diǎn)(A,B,C不與點(diǎn)O 重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x°.
(1)如圖①,若AB∥ON,則
①∠ABO的度數(shù)是________.
②當(dāng)∠BAD=∠ABD時,x=________;當(dāng)∠BAD=∠BDA時,x=________.
(2)如圖②,若AB⊥OM,則是否存在這樣的x值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與一次函數(shù)的圖象相交不同的點(diǎn)A、B,過點(diǎn)A作AD⊥軸于點(diǎn)D,連接AO,其中點(diǎn)A的橫坐標(biāo)為,△AOD的面積為2.
(1)求的值及=4時的值;
(2)記表示為不超過的最大整數(shù),例如:,,設(shè),若,求值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com