【題目】如圖,以正六邊形ABCDEF的中心O為原點(diǎn)建立平面直角坐標(biāo)系,過點(diǎn)AAP1OB于點(diǎn)P1,再過P1P1P2OC于點(diǎn)P2,再過P2P2P3OD于點(diǎn)P3,依次進(jìn)行……若正六邊形的邊長為1,則點(diǎn)P2019的橫坐標(biāo)為_____

【答案】

【解析】

由題意得出,推出OPn,得出OP2019,推出OP2019在第三象限,由點(diǎn)P2019的橫坐標(biāo)的長為:OP2019即可得出結(jié)果.

解:∵正六邊形ABCDEF的中心O為原點(diǎn)建立平面直角坐標(biāo)系,AP1OB,P1P2OCP2P3OD,

∴△OAB為等邊三角形,∠OAP130°,

OP1,

同理:∠P2P1O30°,

OP2,∠P3P2O30°,

OP3,即OPn

OP2019,

2019÷6336…3

OP2019在第三象限,點(diǎn)P2019的橫坐標(biāo)的長為:,

∴點(diǎn)P2019的橫坐標(biāo)為﹣;

故答案為:﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初一年級68名師生參加社會實(shí)踐活動,計(jì)劃租車前往,租車收費(fèi)標(biāo)準(zhǔn)如下:

車型

大巴車

(最多可坐55人)

中巴車

(最多可坐39人)

小巴車

(最多可坐26人)

每車租金

(元天)

900

800

550

則租車一天的最低費(fèi)用為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AB=AC,點(diǎn)DBC上一動點(diǎn),連接AD,過點(diǎn)AAEAD,并且始終保持AE=AD,連接CE

1)求證:ABD≌△ACE;

2)若AF平分∠DAEBCF,探究線段BD,DFFC之間的數(shù)量關(guān)系,并證明;

3)在(2)的條件下,若BD=3CF=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形OABC在平面直角坐標(biāo)系中,點(diǎn)A,C分別在x軸,y軸的正半軸上,等腰直角三角形OEF的直角頂點(diǎn)O在原點(diǎn),E,F分別在OA,OC上,且OA4,OE2.將△OEF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),得△OE1F1,點(diǎn)E,F旋轉(zhuǎn)后的對應(yīng)點(diǎn)為E1F1

(Ⅰ)①如圖①,求E1F1的長;②如圖②,連接CF1,AE1,求證△OAE1≌△OCF1;

(Ⅱ)將△OEF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一周,當(dāng)OE1CF1時(shí),求點(diǎn)E1的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)Am,6),B61)在反比例函數(shù)圖象上,作直線AB,連接OAOB

1)求反比例函數(shù)的表達(dá)式和m的值;

2)求AOB的面積;

3)如圖2,E是線段AB上一點(diǎn),作ADx軸于點(diǎn)D,過點(diǎn)Ex軸的垂線,交反比例函數(shù)圖象于點(diǎn)F,若EFAD,求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖1,以ABC的邊AB為直徑作O,交AC于點(diǎn)EBD平分ABEACF,交圓O于點(diǎn)D,且BDE=∠CBE

1)求證:BCO的切線;

2)如圖2,延長ED交直線AB于點(diǎn)P,若 PA=AO,DE=2,求的值及AO的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從AB兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時(shí)停止.甲車行駛一段時(shí)間后,因故停車0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時(shí)間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)的中點(diǎn),點(diǎn)在邊上,將沿翻折,使得點(diǎn)落在點(diǎn)處,當(dāng)時(shí),則________________

查看答案和解析>>

同步練習(xí)冊答案