如圖,正方形ABCD中,E是CD的中點,EF⊥AE.求證:(1)EF平分∠AFC;(2)BF=3FC.

 

【答案】

(1)延長FE,AD交于G.

先證ΔDEG≌ΔCEF,得∠G=∠EFC,

而∠G=∠GFA.

(2)先證ΔADE∽ΔECF,

得CF∶CE=DE∶DA=1∶2,

∵CE=ED,CD=CB,

從而CF∶CD=CF∶CB=1∶4.

∴BF=3CF.

【解析】(1)延長FE交AD的延長線于G,根據(jù)EG=EF,EF⊥AE,得AE垂直平分FG,根據(jù)垂直平分線的性質(zhì)證明結(jié)論.

(2)先證ΔADE∽ΔECF,得CF:CE=DE:DA=1:2,可得CF= CE=CD,得出結(jié)論;

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖正方形ABCD的邊長為2cm,O是AB的中點,也是拋物線的頂點,OP⊥AB,兩半圓的直徑分別為OA與OB.拋物線經(jīng)過C、D兩點,且關(guān)于OP對稱,則圖中陰影部分的面積之和為
 
cm2.(π取3.14,結(jié)果保留2個有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖正方形ABCD的邊CD上有一點E,連接AE,以A為圓心,AE長為半徑畫弧,交CB的延長線于F,證明△ADE≌△ABF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖正方形ABCD中,E是邊BC上一動點,BC=nBE,DO⊥AE于點O,CO的延長線交AB于精英家教網(wǎng)點F.
(1)當(dāng)n=2時,DO=
 
AO;OE=
 
AO.
(2)當(dāng)n=3時,求證
S四邊形AFCD
S正方形ABCD
=
11
18

(3)當(dāng)n=
 
時,F(xiàn)是AB的5等分點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,如圖正方形ABCD內(nèi)一點E,滿足△CDE為正三角形,直線AE交BC于F點,過E點的直線GH⊥AF,交AB于點G,交CD于點H.以下結(jié)論:
①∠AFC=105°;②GH=2EF;③
2
CE=EF+EH
;④
AE
EH
=
2
3

其中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鄂州)如圖正方形ABCD的邊長為4,E、F分別為DC、BC中點.
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

同步練習(xí)冊答案