【題目】如圖,正方形ABCD中,AB=3,點(diǎn)E是對(duì)角線AC上的一點(diǎn),連接DE,過(guò)點(diǎn)E作EF⊥DE,交AB于點(diǎn)F,連接DF交AC于點(diǎn)G,下列結(jié)論:
①DE=EF;②∠ADF=∠AEF;③DG2=GEGC;④若AF=1,則EG=,其中結(jié)論正確的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
【答案】D
【解析】
證明△DCE≌△BCE,得DE=BE,證出EF=BE,則結(jié)論①正確;易證∠EDF=∠DFE=45°,又∠DAC=45°,∠AGD=∠EGF,則∠ADF=∠AEF,故②正確;證出△DGE∽△CGD,由比例線段可得出結(jié)論DG2=GEGC,③正確;先求出CE長(zhǎng),將△DEC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△DMA,連接MG,易證△DMG≌△DEG,△AMG是直角三角形,得出EG2=AG2+CE2,設(shè)EG=x,則列出方程可求出EG=,則④正確.
解:如圖,連接BE,
∵四邊形ABCD為正方形,
∴CB=CD,∠BCE=∠DCE=45°,
在△BEC和△DEC中,
,
∴△DCE≌△BCE(SAS),
∴DE=BE,∠CDE=∠CBE,
∴∠ADE=∠ABE,
∵∠DAB=90°,∠DEF=90°,
∴∠ADE+∠AFE=180°,
∵∠AFE+∠EFB=180°,
∴∠ADE=∠EFB,
∴∠ABE=∠EFB,
∴EF=BE,
∴DE=EF,故①正確;
∵∠DEF=90°,DE=EF,
∴∠EDF=∠DFE=45°,
∵∠DAC=45°,∠AGD=∠EGF,
∴∠ADF=∠AEF,故②正確;
∵∠GDE=∠DCG=45°,∠DGE=∠CGD,
∴△DGE∽△CGD,
∴,
即DG2=GECG,故③正確;
如圖,過(guò)點(diǎn)E作EN⊥AB于點(diǎn)N,
∵AF=1,AB=3,
∴BF=2,AC=,
∵BE=EF,
∴FN=BN=1,
∴AN=2,
∴,
∴,
將△DEC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△DMA,連接MG,
易證△DMG≌△DEG(SAS),△AMG是直角三角形,
∴MG=GE,
∴MG2=EG2=AM2+AG2=CE2+AG2,
設(shè)EG=x,則AG=,
∴,
解得:x=,即EG=,故④正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)B,C,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),E是BC中點(diǎn),OF⊥DE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)P在AO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).
(1)求點(diǎn)B的坐標(biāo)和OE的長(zhǎng);
(2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tan∠EOF時(shí),求點(diǎn)Q2的坐標(biāo);
(3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.
①延長(zhǎng)AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Q=s,AP=t,求s關(guān)于t的函數(shù)表達(dá)式.
②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把有兩邊對(duì)應(yīng)相等,且?jiàn)A角互補(bǔ)(不相等)的兩個(gè)三角形叫做“互補(bǔ)三角形”,如圖1,□ABCD中,△AOB和△BOC是“互補(bǔ)三角形”.
(1)寫(xiě)出圖1中另外一組“互補(bǔ)三角形”_______;
(2)在圖2中,用尺規(guī)作出一個(gè)△EFH,使得△EFH和△EFG為“互補(bǔ)三角形”,且△EFH和△EFG在EF同側(cè),并證明這一組“互補(bǔ)三角形”的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=12cm,AD=CD=8cm,動(dòng)點(diǎn)E從點(diǎn)A出發(fā)沿AB以每秒1cm的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)B出發(fā)沿BA以每秒1cm的速度向點(diǎn)A運(yùn)動(dòng),過(guò)點(diǎn)E作AB的垂線交折線AD-DC于點(diǎn)G,以EG、EF為鄰邊作矩形EFHG,設(shè)點(diǎn)E、F運(yùn)動(dòng)的時(shí)間為t(秒),矩形EFHG與四邊形ABCD重疊部分的面積為S(cm2).
(1)求EG的長(zhǎng)(用含t的代數(shù)式表示);
(2)當(dāng)t為何值時(shí),點(diǎn)G與點(diǎn)D重合?
(3)當(dāng)點(diǎn)G在DC上時(shí),求S(cm2)與t(秒)的函數(shù)關(guān)系式(S>0);
(4)連接EH、GF、AC、BD,在運(yùn)動(dòng)過(guò)程中,當(dāng)這四條線段所在的直線有兩條平行時(shí),直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類情況,其相關(guān)信息如下:
根據(jù)圖表解答下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共 噸;
(3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占,每回收1噸塑料類垃圾可獲得0.7噸二級(jí)原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為5 000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級(jí)原料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更精準(zhǔn)地關(guān)愛(ài)留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個(gè)班級(jí),發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)該班共有 名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對(duì)D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛(ài)活動(dòng),請(qǐng)你估計(jì)該校將有多少名留守學(xué)生在此關(guān)愛(ài)活動(dòng)中受益?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=圖象上一點(diǎn),過(guò)點(diǎn)A作x軸的平行線交反比例函數(shù)y=﹣的圖象于點(diǎn)B,點(diǎn)C在x軸上,且S△ABC=,則k=( 。
A. 6B. ﹣6C. D. ﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開(kāi)設(shè)四門選修課:樂(lè)器、舞蹈、繪畫(huà)、書(shū)法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計(jì)圖中,m的值是______.
分別求出參加調(diào)查的學(xué)生中選擇繪畫(huà)和書(shū)法的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
該校共有學(xué)生2000人,估計(jì)該校約有多少人選修樂(lè)器課程?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com