【題目】如圖所示,在平面直角坐標(biāo)系中,已知反比例函數(shù)y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個(gè)頂點(diǎn)B、C恰好同時(shí)落在反比例函數(shù)的圖象上,則反比例函數(shù)的解析式是______________.
【答案】
【解析】
解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設(shè)菱形平移后B的坐標(biāo)是(x,4),C的坐標(biāo)是(1+x,2).∵B、C落在反比例函數(shù)的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標(biāo)是(1,4),代入反比例函數(shù)的解析式得:k=1×4=4,即B、C落在反比例函數(shù)的圖象上,菱形的平移距離是1,反比例函數(shù)的解析式是y=.故答案為:y=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了解全校1600名學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整).
(1)問:在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)估計(jì)全校所有學(xué)生中有多少人乘坐公交車上學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=kx(k>0)的圖象與x軸相交所成的銳角為70°,定點(diǎn)A的坐標(biāo)為(0,8),P為y軸上的一個(gè)動(dòng)點(diǎn),M、N為函數(shù)y=kx(k>0)的圖象上的兩個(gè)動(dòng)點(diǎn),則AM+MP+PN的最小值為( 。
A. 4 B. 4 C. 8sin40° D. 8sin20°(1+cos20°+sin20°cos20°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與打車時(shí)間如表:
時(shí)間(分鐘) | 里程數(shù)(公里) | 車費(fèi)(元) | |
小明 | 8 | 8 | 12 |
小剛 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(6,0)、B(8,8)兩點(diǎn).
(1)求拋物線的解析式;
(2)將直線OB向下平移m個(gè)單位長度后,得到的直線與拋物線只有一個(gè)公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標(biāo)平面內(nèi)有點(diǎn)P,求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對應(yīng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:探究函數(shù)的圖象與性質(zhì).小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過程,請補(bǔ)充完整:在函數(shù)y=|x|﹣2中,自變量x可以是任意實(shí)數(shù);
Ⅰ如表是y與x的幾組對應(yīng)值.
y | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
x | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m= ;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點(diǎn),則n= ;
Ⅱ如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:
①該函數(shù)的最小值為 ;
②該函數(shù)的另一條性質(zhì)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE∥AD.
(1)求證:四邊形ACED是平行四邊形;
(2)若AC=2,CE=4,求四邊形ACEB的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)請畫出△ABC關(guān)于y軸對稱的△A'B'C'(其中A',B',C'分別是A,B,C的對應(yīng)點(diǎn),不寫畫法).
(2)直接寫出A′,B′,C'三點(diǎn)的坐標(biāo):A'_______,B'______,C'______;
(3)△ABC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com