【題目】已知在平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(2,2),對稱軸是直線x=1,頂點(diǎn)為B.
(1)求這條拋物線的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)點(diǎn)M在對稱軸上,且位于頂點(diǎn)上方,設(shè)它的縱坐標(biāo)為m,聯(lián)結(jié)AM,用含m的代數(shù)式表示∠AMB的余切值;
(3)將該拋物線向上或向下平移,使得新拋物線的頂點(diǎn)C在x軸上.原拋物線上一點(diǎn)P平移后的對應(yīng)點(diǎn)為點(diǎn)Q,如果OP=OQ,求點(diǎn)Q的坐標(biāo).
【答案】(1)拋物線的解析式為y=﹣x2+2x+2.頂點(diǎn)B坐標(biāo)為(1,3).
(2)cot∠AMB=m﹣2.
(3)點(diǎn)Q的坐標(biāo)為(,﹣)或(,﹣).
【解析】
試題分析:(1)依據(jù)拋物線的對稱軸方程可求得b的值,然后將點(diǎn)A的坐標(biāo)代入y=﹣x2+2x+c可求得c的值;
(2)過點(diǎn)A作AC⊥BM,垂足為C,從而可得到AC=1,MC=m﹣2,最后利用銳角三角函數(shù)的定義求解即可;
(3)由平移后拋物線的頂點(diǎn)在x軸上可求得平移的方向和距離,故此QP=3,然后由點(diǎn)QO=PO,QP∥y軸可得到點(diǎn)Q和P關(guān)于x對稱,可求得點(diǎn)Q的縱坐標(biāo),將點(diǎn)Q的縱坐標(biāo)代入平移后的解析式可求得對應(yīng)的x的值,則可得到點(diǎn)Q的坐標(biāo).
試題解析:(1)∵拋物線的對稱軸為x=1,∴x=﹣=1,即 =1,解得b=2.
∴y=﹣x2+2x+c.
將A(2,2)代入得:﹣4+4+c=2,解得:c=2.
∴拋物線的解析式為y=﹣x2+2x+2.
配方得:y=﹣(x﹣1)2+3.∴拋物線的頂點(diǎn)坐標(biāo)為(1,3).
(2)如圖所示:過點(diǎn)A作AC⊥BM,垂足為C,則AC=1,C(1,2).
∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.
(3)∵拋物線的頂點(diǎn)坐標(biāo)為(1,3),平移后拋物線的頂點(diǎn)坐標(biāo)在x軸上,
∴拋物線向下平移了3個單位.
∴平移后拋物線的解析式為y=﹣x2+2x﹣1,PQ=3.
∵OP=OQ,∴點(diǎn)O在PQ的垂直平分線上.
又∵QP∥y軸,∴點(diǎn)Q與點(diǎn)P關(guān)于x軸對稱.
∴點(diǎn)Q的縱坐標(biāo)為﹣ .
將y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x= 或x=.
∴點(diǎn)Q的坐標(biāo)為(,﹣)或(,﹣).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓同學(xué)們了解自己的體育水平,初二1班的體育劉老師對全班45名學(xué)生進(jìn)行了一次體育模擬測試(得分均為整數(shù)),成績滿分為10分,1班的體育委員根據(jù)這次測試成績,制作了統(tǒng)計(jì)圖和分析表如下:
初二1班體育模擬測試成績分析表
平均分 | 方差 | 中位數(shù) | 眾數(shù) | |
男生 | 2 | 8 | 7 | |
女生 | 7.92 | 1.99 | 8 |
根據(jù)以上信息,解答下列問題:
(1)這個班共有男生人,共有女生人;
(2)補(bǔ)全初二1班體育模擬測試成績分析表;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M是一個五次多項(xiàng)式,N是一個三次多項(xiàng)式,則M+N一定是( )
A. 五次多項(xiàng)式B. 五次整式C. 多項(xiàng)式D. 單項(xiàng)式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將直線y=x+b沿y軸向下平移3個單位長度,點(diǎn)A(﹣1,2)關(guān)于y軸的對稱點(diǎn)落在平移后的直線上,則b的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑長為1,AB、AC是⊙O的兩條弦,且AB=AC,BO的延長線交AC于點(diǎn)D,聯(lián)結(jié)OA、OC.
(1)求證:△OAD∽△ABD;
(2)當(dāng)△OCD是直角三角形時,求B、C兩點(diǎn)的距離;
(3)記△AOB、△AOD、△COD 的面積分別為S1、S2、S3,如果S2是S1和S3的比例中項(xiàng),求OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1、l2相交于點(diǎn)A(2,3),直線l1與x軸交點(diǎn)B的坐標(biāo)為(﹣1,0),直線l2與y軸交于點(diǎn)C,已知直線l2的解析式為y=2.5x﹣2,結(jié)合圖象解答下列問題:
(1)求直線l1的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“一帶一路”建設(shè)的不斷發(fā)展,我國已與多個國家建立了經(jīng)貿(mào)合作關(guān)系,2017年中哈鐵路(中國至哈薩克斯坦)運(yùn)輸量達(dá)12800000,將12800000用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班級45名同學(xué)自發(fā)籌集到1700元資金,用于初中畢業(yè)時各項(xiàng)活動的經(jīng)費(fèi).通過商議,決定拿出不少于544元但不超過560元的資金用于請專業(yè)人士拍照,其余資金用于給每名同學(xué)購買一件文化衫或一本制作精美的相冊作為紀(jì)念品.已知每件文化衫28元,每本相冊20元.
(1)適用于購買文化衫和相冊的總費(fèi)用為W元,求總費(fèi)用W(元)與購買的文化衫件數(shù)t(件)的函數(shù)關(guān)系式.
(2)購買文化衫和相冊有哪幾種方案?為了使拍照的資金更充足,應(yīng)選擇哪種方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com