【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】B

【解析】∵AB=AC,∠BAC=90°,PBC中點(diǎn),

∴∠APC=90°,AP=CP=BP,∠B=∠C=∠BAP=45°,

∵∠FPE=90°,

∴∠FPC=∠APE,

∴△PEA≌△PFC,

∴AE=FC,PE=PF,

∴△EPF是等腰直角三角形,S四邊形AEPF=SAPC,

∵2SAPC =SABC

2S四邊形AEPF=SABC

由上面的解題過(guò)程可證得BE+CF=AB,不能證得BE+CF=EF

所以,正確的結(jié)論為①②③,共3個(gè),故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE.

(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BC10,BC邊上的高為3.將點(diǎn)A繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)E,繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D.沿BC翻折得到點(diǎn)F,從而得到一個(gè)凸五邊形BFCDE,則五邊形BFCDE的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA6,PB8,PC10.若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△PAB

1)求點(diǎn)P與點(diǎn)P′之間的距離;

2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列證明

如圖,點(diǎn)DE,F分別在AB,BC,AC上,且DE//AC,EF//AB

求證:∠A+B+C=180°

證明:∵DE//AC,

∴∠1=________,∠4=________

又∵EF//AB,

∴∠3=________

2=________

∴∠2=A

又∵∠1+2+3=180°(平角定義)

∴∠A+B+C=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器商城銷售、兩種型號(hào)的電風(fēng)扇,進(jìn)價(jià)分別為元、元,下表是近兩周的銷售情況:

銷售時(shí)段

銷售型號(hào)

銷售收入

種型號(hào)

種型號(hào)

第一周

臺(tái)

臺(tái)

第二周

臺(tái)

臺(tái)

1)求、兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

2)若商城準(zhǔn)備用不多于元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共臺(tái),求種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

3)在(2)的條件下商城銷售完這臺(tái)電風(fēng)能否實(shí)現(xiàn)利潤(rùn)超過(guò)元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】疫情期間,學(xué)校為了學(xué)生在班級(jí)將生活垃圾和廢棄口罩分類丟棄,準(zhǔn)備購(gòu)買A,B兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需270元,購(gòu)買2個(gè)A型垃圾箱比購(gòu)買3個(gè)B型垃圾箱少用80元.求每個(gè)A型垃圾箱和B型垃圾箱各多少元?學(xué)校購(gòu)買A型垃圾桶8個(gè),B型垃圾桶16個(gè),共花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,EF、G、H分別為AD、BC、BD、AC的中點(diǎn),順次連接EG、FH

1)猜想四邊形EGFH是什么特殊的四邊形,并說(shuō)明理由;

2)當(dāng)∠ABC與∠DCB滿足什么關(guān)系時(shí),四邊形EGFH為正方形,并說(shuō)明理由;

3)猜想:∠GFH、∠ABC、∠DCB三個(gè)角之間的關(guān)系.直接寫出結(jié)果____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在四邊形ABCD中,ABAD,∠BAD120°,∠B∠ADC90°,EF分別是 BC,CD上的點(diǎn),且∠EAF60°,探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問(wèn)題的方法是延長(zhǎng)FD到點(diǎn)G,使DGBE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;

探索延伸:

2)如圖2,若在四邊形ABCD中,ABAD,∠B∠D180°,EF分別是BC,CD上的點(diǎn),且∠EAF∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案