【題目】如圖,△ABC中,AB=AC=2,BC邊上有10個(gè)不同的點(diǎn) , ,…… , 記 (i = 1,2,……,10),那么 的值為( )
A.4
B.14
C.40
D.不能確定
【答案】C
【解析】解 : 過(guò)點(diǎn)A作AD⊥BC與D,
在Rt△ABD和Rt△APiD中,
∵AB2=AD2+BD2,APi2=AD2+PiD2 ,
∴AB2APi2=AD2+BD2(AD2+PiD2)=BD2PiD2=(BD+PiD)(BDPiD)=PiCPiB,
∴APi2+PiCPiB=AB2=4,
∴Mi=4.
∴M1+M2+…+M10=4×10=40.
所以答案是 :40.
【考點(diǎn)精析】本題主要考查了等式和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,不是定理的是( 。
A. 直角三角形兩銳角互余
B. 兩直線平行,同旁內(nèi)角互補(bǔ)
C. n邊形的內(nèi)角和為(n﹣2)×180°
D. 相等的角是對(duì)頂角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)P在線段BC上(不含點(diǎn)B),∠BPE=∠ACB,PE交BO于點(diǎn)E,過(guò)點(diǎn)B作BF⊥PE,垂足為F,交AC于點(diǎn)G.
(1)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)(如圖1).求證:△BOG≌△POE;
(2)結(jié)合圖2,通過(guò)觀察、測(cè)量、猜想:=______,并證明你的猜想;
(3)把正方形ABCD改為菱形,其他條件不變(如圖3),若AC=8,BD=6,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(-2,3-π)所在象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的標(biāo)價(jià)為200元,8折銷售仍賺40元,則商品進(jìn)價(jià)為( )元。
A.140
B.120
C.160
D.100
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中是真命題的有( )
①同位角相等②相等的角是對(duì)頂角③直角三角形的兩個(gè)銳角互余④三個(gè)內(nèi)角相等的三角形是等邊三角形⑤若|a|=|b|,則a2=b2.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正六邊形ABCDEF的邊長(zhǎng)為6cm,P是對(duì)角線BE上一動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l與BE垂直,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)且以1cm/s的速度勻速平移至E點(diǎn).設(shè)直線l掃過(guò)正六邊形ABCDEF區(qū)域的面積為S(cm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),下列能反映S與t之間函數(shù)關(guān)系的大致圖象是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com