【題目】中,,過點C做直線P為直線l上一點,且,則點PBC所在直線的距離是______

【答案】

【解析】

如圖1,延長BC,作,交點為D,延長CA,作于點E,可得四邊形CDPE是矩形,則,;中,,,所以,可求出,,又因為;所以,在直角中,可運用勾股定理求得DP的長即為點PBC的距離;

如圖2,延長AC,做交點為D,,交點為E,可得四邊形CDPE是矩形,則;中,,,所以,可求出,,又因為;所以,在直角中,可運用勾股定理求得DP的長即為點PBC的距離

如圖1,延長BC,作,交點為D,延長CA,作于點E,

四邊形CDPE是矩形,

,

中,,,

,

,

,,

,

設(shè),

在直角中,,

,

解得,

如圖2,作D,,交AC延長線于E

中,,

,

,

,

在直角中,,

同理:四邊形CDPE是矩形,

,

設(shè),

在直角中,,

,

解得

故點PBC所在直線的距離是

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點為,頂點為.

1)求該二次函數(shù)的解析式及點,的坐標(biāo);

2)點軸上的動點,

的最大值及對應(yīng)的點的坐標(biāo);

②設(shè)軸上的動點,若線段與函數(shù)的圖像只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(a1x2+2x+a+10

1)若該方程有一根為0,求a的值及方程的另一根;

2)當(dāng)a為何值時,方程僅有一個實數(shù)根?求出此時a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD交于點O,已知∠AOD=120°,AC=16,則圖中長度為8的線段有( 。

A. 2 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EBD上一點,AE的延長線交CDF,交BC的延長線于G,MFG的中點,連接EC.

1)求證:∠1=2;

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一菱形紙片,,將該菱形紙片折疊,使點恰好與的中點重合,折痕為,點分別在邊、上,聯(lián)結(jié),那么的值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(/千克)之間的函數(shù)關(guān)系如圖所示.

(1)的函數(shù)關(guān)系式,并寫出的取值范圍;

(2)當(dāng)該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?

(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進(jìn)行銷售,能否銷售完這批蜜柚?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.

1)表示出所有可能出現(xiàn)的結(jié)果;

2)小黃和小石做游戲,制定了兩個游戲規(guī)則:

規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.

規(guī)則2:若摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時,小黃贏;否則,小石贏.

小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過點A4,1)的直線與反比例函數(shù)y的圖象交于點A、C,ABy軸,垂足為B,連接BC

1)求反比例函數(shù)的表達(dá)式;

2)若ABC的面積為6,求直線AC的函數(shù)表達(dá)式;

3)在(2)的條件下,點P在雙曲線位于第一象限的圖象上,若∠PAC90°,則點P的坐標(biāo)是   

查看答案和解析>>

同步練習(xí)冊答案