【題目】閱讀以下材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(JNapier,1550-1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)概念建立之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Euler,1707-1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.對(duì)數(shù)的定義:一般地,若,則叫做以為底的對(duì)數(shù),記作.比如指數(shù)式可以轉(zhuǎn)化為,對(duì)數(shù)式可以轉(zhuǎn)化為.我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):.理由如下:設(shè),所以,,所以,由對(duì)數(shù)的定義得,又因?yàn)?/span>,所以.解決以下問題:

1)將指數(shù)轉(zhuǎn)化為對(duì)數(shù)式:

2)仿照上面的材料,試證明:

3)拓展運(yùn)用:計(jì)算

【答案】1;(2)見解析;(32

【解析】

1)根據(jù)題意可以把指數(shù)式53=125寫成對(duì)數(shù)式;

2)先設(shè)logaM=x,logaN=y,根據(jù)對(duì)數(shù)的定義可表示為指數(shù)式為:M=axN=ay,計(jì)算的結(jié)果,同理由所給材料的證明過程可得結(jié)論;

3)根據(jù)公式:logaMN=logaM+logaN的逆用,將所求式子表示為:log32×18÷4),計(jì)算可得結(jié)論.

1)∵一般地,若ax=Na0,a≠1),那么x叫做以a為底N的對(duì)數(shù),記作:記作:x=logaN
3=log5125,
故答案為:3=log5125

2)證明:設(shè),

,,

,

由對(duì)數(shù)的定義得

又∵,

3 log32×18÷4= log39=2.

故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店每天售出甲、乙兩種筆,統(tǒng)計(jì)后發(fā)現(xiàn):甲、乙兩種筆同一天售出量之間滿足一次函數(shù)的關(guān)系,設(shè)甲、乙兩種筆同一天的售出量分別為x(支)、y(支),部分?jǐn)?shù)據(jù)如表所示(下表中每一列數(shù)據(jù)表示甲、乙兩種筆同一天的售出量).

甲種筆售出x(支)

4

6

8

乙種筆售出y(支)

6

12

18

1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫出函數(shù)的定義域)

2)某一天文具店售出甲、乙兩種筆的營(yíng)業(yè)額分別為30元和120元,如果乙種筆每支售價(jià)比甲種筆每支售價(jià)多2元,那么甲、乙兩種筆這天各售出多少支?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=3cm、AC=4cm、BC=5cm,在ABC所在平面內(nèi)畫一條直線,將ABC分割成兩個(gè)三角形,使其中的一個(gè)是等腰三角形,則這樣的直線最多可畫的條數(shù)為( 。

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于A,B兩點(diǎn),與軸交于點(diǎn)C,連接BC

1)如圖1,求直線BC的表達(dá)式;

2)如圖1,點(diǎn)P是拋物線上位于第一象限內(nèi)的一點(diǎn),連接PC,PB,當(dāng)△PCB面積最大時(shí),一動(dòng)點(diǎn)Q從點(diǎn)P從出發(fā),沿適當(dāng)路徑運(yùn)動(dòng)到軸上的某個(gè)點(diǎn)G處,再沿適當(dāng)路徑運(yùn)動(dòng)到軸上的某個(gè)點(diǎn)H處,最后到達(dá)線段BC的中點(diǎn)F處停止,求當(dāng)△PCB面積最大時(shí),點(diǎn)P的坐標(biāo)及點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中經(jīng)過的最短路徑的長(zhǎng);

3)如圖2,在(2)的條件下,當(dāng)△PCB面積最大時(shí),把拋物線向右平移使它的圖象經(jīng)過點(diǎn)P,得到新拋物線,在新拋物線上,是否存在點(diǎn)E,使△ECB的面積等于△PCB的面積.若存在,請(qǐng)求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)四邊形的對(duì)角線把四邊形分成兩個(gè)三角形,一個(gè)是等邊三角形,另一個(gè)是該對(duì)角線所對(duì)的角為的三角形,我們把這條對(duì)角線叫做這個(gè)四邊形的理想對(duì)角線,這個(gè)四邊形稱為理想四邊形.

1)如圖,在中,,,上一點(diǎn),,中點(diǎn),連接,求證:四邊形為理想四邊形;

2)如圖是等邊三角形,若為理想對(duì)角線,四邊形為理想四邊形.請(qǐng)畫圖找出符合條件的C點(diǎn)落在怎樣的圖形上;(在圖中標(biāo)出必要的數(shù)據(jù))

3)在(2)的條件下,

為直角三角形,,求的長(zhǎng)度;

如圖,若,,請(qǐng)直接寫出、、之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,且關(guān)于x的一元二次方程ax2+bx+cm0沒有實(shí)數(shù)根,則下列結(jié)論:b24ac0;ac0;m2,其中正確結(jié)論的個(gè)數(shù)是(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾,納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.

對(duì)數(shù)的定義:一般地,若axNa0,a1),那么x叫做以a為底N的對(duì)數(shù),記作:記作:xlogaN.比如指數(shù)式2416可以轉(zhuǎn)化為4log216,對(duì)數(shù)式2log525可以轉(zhuǎn)化為5225

我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):

logaMN)=logaM+logaNa0a1,M0N0);理由如下:logaMm,logaNn,則MamNan

MNamanam+n,由對(duì)數(shù)的定義得m+nlogaMN

又∵m+nlogaM+logaN

logaMN)=logaM+logaN

解決以下問題:

1)將指數(shù)式53125轉(zhuǎn)化為對(duì)數(shù)式   ;

2log24   ,log381   log464=   .(直接寫出結(jié)果)

3)證明:證明logalogaMlogaNa0,a1,M0N0).(寫出證明過程)

4)拓展運(yùn)用:計(jì)算計(jì)算log34+log312log316   .(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次綜合實(shí)踐活動(dòng)中,小亮要測(cè)量一樓房的高度,先在坡面處測(cè)得樓房頂部的仰角為,沿坡面向下走到坡腳處,然后向樓房方向繼續(xù)行走10米到達(dá)處,測(cè)得樓房頂部的仰角為.已知坡面米,山坡的坡度(坡度是指坡面的鉛直高度與水平寬度的比),求樓房高度.(結(jié)果精確到0.1米)(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】思維探索:

在正方形ABCD中,AB4,∠EAF的兩邊分別交射線CB,DC于點(diǎn)E,F,∠EAF45°.

1)如圖1,當(dāng)點(diǎn)E,F分別在線段BCCD上時(shí),△CEF的周長(zhǎng)是   

2)如圖2,當(dāng)點(diǎn)E,F分別在CB,DC的延長(zhǎng)線上,CF2時(shí),求△CEF的周長(zhǎng);

拓展提升:

如圖3,在RtABC中,∠ACB90°,CACB,過點(diǎn)BBDBC,連接AD,在BC的延長(zhǎng)線上取一點(diǎn)E,使∠EDA30°,連接AE,當(dāng)BD2,∠EAD45°時(shí),請(qǐng)直接寫出線段CE的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案