【題目】如圖,拋物線yx22x3x軸交于點A(﹣10),點B3,0),與y軸交于點C,點D是該拋物線的頂點,連接AD,BD

1)直接寫出點CD的坐標;

2)求△ABD的面積;

3)點P是拋物線上的一動點,若△ABP的面積是△ABD面積的,求點P的坐標.

【答案】(1)D1,﹣4);(2)8;(3)(1+2)、(12)、(1+,﹣2)、(1,﹣2).

【解析】

1)利用拋物線與y軸交點求法得出C點坐標,再利用配方法求出其頂點坐標;

2)利用D點坐標得出△ABD的面積;

3)利用△ABD的面積得出△ABP的面積,進而求出P點縱坐標,進而求出其橫坐標.

解:(1)當x0,則y=﹣3,

C0,﹣3),

yx22x3

=(x124

D1,﹣4);

2A(﹣1,0),點B3,0),

∴AB4

∴SABD×4×48;

3∵△ABP的面積是△ABD面積的

∴SABP4,

∵AB4,

∴P點縱坐標為2或﹣2,

P點縱坐標為2,則2x22x3

解得:x11+,x21,

此時P點坐標為:(1+,2)或(1,2),

P點縱坐標為﹣2,則﹣2x22x3,

解得:x11+,x21,

此時P點坐標為:(1+,﹣2)或(1,﹣2),

綜上所述:點P坐標為:(1+,2)、(1,2)、(1+,﹣2)、(1,﹣2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC為弦,點D是弧BC的中點,過點D作⊙O的切線交AC的延長線于點E

1)判斷DEAE的位置關(guān)系,并說明理由;

2)求證:AB=AE+CE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交A、B兩點(A點在B點左側(cè)),直線與拋物線交于AC兩點,其中C點的橫坐標為2.

(1)求A、B兩點的坐標及直線AC的函數(shù)表達式;

(2)P是線段AC上的一個動點,過P點作軸的平行線交拋物線于E點,求線段PE長度的最大值;

(3)點G是拋物線上的動點,在x軸上是否存在點F,使AC、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-x+3x軸、y軸分別交于AB兩點,拋物線y=-x2+bx+c經(jīng)過AB兩點,點P在線段OA上,從點O出發(fā),向點A1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B個單位/秒的速度勻速運動,連接PQ,設(shè)運動時間為t秒.

1)求拋物線的解析式;

2)問:當t為何值時,△APQ為直角三角形;

3)過點PPE∥y軸,交AB于點E,過點QQF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標;

4)設(shè)拋物線頂點為M,連接BP,BM,MQ,問:是否存在t的值,使以BQ,M為頂點的三角形與以O,B,P為頂點的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACB=60,半徑為2⊙0BC于點C,若將⊙OCB上向右滾動,則當滾動到⊙OCA也相切時,圓心O移動的水平距離為 ( )

A. B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.如圖1,在平面直角坐標系xoy中,Mx軸正半軸上一點,⊙Mx軸的正半軸交于A,B兩點,AB的左側(cè),且OA,OB的長是方程x2-12x+27=0的兩根,ON⊙M的切線,N為切點,N在第四象限.

1)求⊙M的直徑的長.

2)如圖2,將△ONM沿ON翻轉(zhuǎn)180°△ONG,求證△OMG是等邊三角形.

3)求直線ON的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2(m+1)x+m21=0.
(1)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(2)若方程兩實數(shù)根分別為x1,x2,且滿足x1+x2+x1x2=5,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,與軸交于點,點是拋物線的頂點.

1)求拋物線的解析式.

2)點軸負半軸上的一點,且,點在對稱軸右側(cè)的拋物線上運動,連接,與拋物線的對稱軸交于點,連接,當平分時,求點的坐標.

3)直線交對稱軸于點,是坐標平面內(nèi)一點,請直接寫出全等時點的坐標.

查看答案和解析>>

同步練習冊答案