【題目】如圖1,E為半圓O直徑AB上一動點,C為半圓上一定點,連接AC和BC,AD平分∠CAB交BC于點D,連接CE和DE.如果AB=6cm,AC=2.5cm,設A,E兩點間的距離為xcm,C,E兩點間的距離為y1cm,D,E兩點間的距離為y2cm.
小明根據(jù)學習函數(shù)經(jīng)驗,分別對函數(shù)y1和y2隨自變量x變化而變化的規(guī)律進行了探究.
下面是小明的探究過程,請將它補充完整:
(1)按表中自變量x值進行取點、畫圖、測量,得到了y1和y2與x幾組對應值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 2.50 | 2.27 | 2.47 | m | 3.73 | 4.56 | 5.46 |
y2/cm | 2.97 | 2.20 | 1.68 | 1.69 | 2.19 | 2.97 | 3.85 |
問題:上表中的m=______cm;
(2)在同一平面直角坐標系xOy中(見圖2),描出補全后的表中各組數(shù)值所對應的點(x,y2)和(x,y1),并畫出函數(shù)y1和y2的圖象;
(3)結合函數(shù)的圖象,解決問題:當△ACE為等腰三角形時,AE的長度約為______cm(結果精確到001).
【答案】(1)3;(2)見解析;(3)①2.5;②0;③3.
【解析】
(1)當x=3時,點E與點O重合,故CE即為CO,即可求解;
(2)根據(jù)表格數(shù)據(jù),描點后圖象如下圖2;
(3)分AE=AC、AC=CE、AE=CE三種情況,求解即可.
解:(1)當x=3時,點E與點O重合,故CE即為CO=3,
故:答案為3;
(2)根據(jù)表格數(shù)據(jù),描點后圖象如下圖2;
(3)△ACE為等腰三角形,有以下三種情況:
①當AE=AC時,
AE=AC=2.5;
②AC=CE時,
即y1=CE=2.5,從圖象可以看出,x=0;
即:AE=0(舍去),
③當AE=CE時,
即:x=y1,從圖中可以看出:x=3,
即:AE=3;
故:答案為2.50或3.00.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由(參考數(shù)據(jù): ≈1.4, ≈1.7).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結果精確到0.1米, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):
①以點A為圓心,BC邊的長為半徑作⊙A;
②以點B為頂點,在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ABCD,點E是BC邊上的一點,將邊AD延長至點F,使∠AFC=∠DEC.
(1)求證:四邊形DECF是平行四邊形;
(2)若AB=13,DF=14,tan A=,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年“五一”假期,某數(shù)學活動小組組織一次登山活動.他們從山腳下A點出發(fā)沿斜坡AB到達B點,再從B點沿斜坡BC到達山頂C點,路線如圖所示.斜坡AB的長為1000米,斜坡BC的長為200米,在C點測得B點的俯角為45°,已知A點海拔21米,C點海拔721米.
(1)求B點的海拔;
(2)求斜坡AB的坡角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生體質情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應為優(yōu)秀、良好、及格、不及格四個等級,統(tǒng)計員在將測試數(shù)據(jù)繪制成圖表時發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計4人,良好漏統(tǒng)計6人,于是及時更正,從而形成如圖圖表,請按正確數(shù)據(jù)解答下列各題:
學生體能測試成績各等次人數(shù)統(tǒng)計表
體能等級 | 調整前人數(shù) | 調整后人數(shù) |
優(yōu)秀 | 8 |
|
良好 | 16 |
|
及格 | 12 |
|
不及格 | 4 |
|
合計 | 40 |
|
(1)填寫統(tǒng)計表;
(2)根據(jù)調整后數(shù)據(jù),補全條形統(tǒng)計圖;
(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=﹣1的拋物線y=x2+bx+c與x軸相交于A、B兩點,其中點A的坐標為(﹣3,0).
(1)求點B的坐標;
(2)求二次函數(shù)的解析式;
(3)已知C為拋物線與y軸的交點,設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com