(2013•宜賓)如圖,將面積為5的△ABC沿BC方向平移至△DEF的位置,平移的距離是邊BC長的兩倍,那么圖中的四邊形ACED的面積為
15
15
分析:設(shè)點(diǎn)A到BC的距離為h,根據(jù)平移的性質(zhì)用BC表示出AD、CE,然后根據(jù)三角形的面積公式與梯形的面積公式列式進(jìn)行計算即可得解.
解答:解:設(shè)點(diǎn)A到BC的距離為h,則S△ABC=
1
2
BC•h=5,
∵平移的距離是BC的長的2倍,
∴AD=2BC,CE=BC,
∴四邊形ACED的面積=
1
2
(AD+CE)•h=
1
2
(2BC+BC)•h=3×
1
2
BC•h=3×5=15.
故答案為:15.
點(diǎn)評:本題考查了平移的性質(zhì),三角形的面積,主要用了對應(yīng)點(diǎn)間的距離等于平移的距離的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)如圖,一個含有30°角的直角三角形的兩個頂點(diǎn)放在一個矩形的對邊上,若∠1=25°,則∠2=
115°
115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過點(diǎn)C作CE⊥BD于點(diǎn)E,過點(diǎn)A作BD的平行線,交CE的延長線于點(diǎn)F,在AF的延長線上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長為
20
20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足
CF
FD
=
1
3
,連接AF并延長交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.給出下列結(jié)論:
①△ADF∽△AED;②FG=2;③tan∠E=
5
2
;④S△DEF=4
5

其中正確的是
①②④
①②④
(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)如圖,AB是⊙O的直徑,∠B=∠CAD.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)E是
BD
的中點(diǎn),連接AE交BC于點(diǎn)F,當(dāng)BD=5,CD=4時,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)如圖,拋物線y1=x2-1交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線向右平移4個單位得拋物線y2,兩條拋物線相交于點(diǎn)C.
(1)請直接寫出拋物線y2的解析式;
(2)若點(diǎn)P是x軸上一動點(diǎn),且滿足∠CPA=∠OBA,求出所有滿足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案