【題目】如圖,O為直線AB上一點,OC為射線,ODOE分別為∠AOC、∠BOC的平分線.

1)判斷射線ODOE的位置關(guān)系,并說明理由;

2)若∠AOD30°,求證:OC為∠AOE的平分線;

3)如果∠AOD:∠AOE211,求∠BOE的度數(shù).

【答案】(1)垂直(2)證明見解析(3)70°

【解析】

由OD、OE分別為AOC、BOC的平分線,可得∠DOE為180°的一半,可得OD⊥OE;

由OD為AOC的平分線和AOD=30°得到∠COD=AOD=30°,由(1)得∠DOE=90°,可得∠COE=60°,又由∠AOC=60°,可得OC為AOE的平分線;

由OD⊥OE和AOD︰AOE=2︰11即可求.

(1)垂直

OD、OE分別為AOC、BOC的平分線,

∴∠COD=COA COE=COB.

∴∠EOD=COA+COB=AOB=90°.

ODOE.

(2)∵∠AOD=30°,

∴∠COD=30°.

∴∠COE=90-30=60°,COA=60°

∴∠COE=COA.

OC為AOE的平分線.

(3)∵∠AOD︰AOE=2︰11,

∴∠AOD︰DOE=2︰9.

∴∠AOD=20° .

∴∠BOE=90°-20°=70°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上的一點,點E在BC邊上,連接AE,DE,DC,AE=CD.

(1)求證:△ABE≌△CBD;

(2)若∠BAE=15°,求∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ADB=ADC,則不一定能使△ABD≌△ACD的條件是(  )

A. AB=AC B. BD=CD C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.

解:∵∠1+∠2=180°(已知),

∠1+∠EFD=180°(鄰補(bǔ)角定義),

∴∠2=∠EFD(

∴AB∥EF(內(nèi)錯角相等,兩直線平行)

∴∠ADE=∠3(

∵∠3=∠B(已知)

∴∠ADE=∠B(

(同位角相等,兩直線平行)

∴∠AED=∠C(兩直線平行,同位角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A,點B是數(shù)軸上原點O兩側(cè)的兩點,其中點A在負(fù)半軸上,且滿足AB12OB2OA

1)點A,B在數(shù)軸上對應(yīng)的數(shù)分別為 ;

2)點A,B同時分別以每秒2個單位長度和每秒4個單位長度的速度向左運動.

經(jīng)過幾秒后,OA3OB

A,B在運動的同時,點P以每秒2個單位長度的速度從原點向右運動,經(jīng)過幾秒后,點A,B,P中的某一點成為其余兩點所連線段的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四川省“單獨兩孩”政策于2014年3月20日正式開始實施,該政策的實施可能給我們的生活帶來一些變化,綿陽市人口計生部門抽樣調(diào)查了部分市民(每個參與調(diào)查的市民必須且只能在以下6種變化中選擇一項),并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖:

種類

A

B

C

D

E

F

變化

有利于延緩社會老齡化現(xiàn)象

導(dǎo)致人口暴增

提升家庭抗風(fēng)險能力

增大社會基本公共服務(wù)的壓力

緩解男女比例不平衡現(xiàn)象

促進(jìn)人口與社會、資源、環(huán)境的協(xié)調(diào)可持續(xù)發(fā)展


根據(jù)統(tǒng)計圖,回答下列問題:
(1)參與調(diào)查的市民一共有人;
(2)參與調(diào)查的市民中選擇C的人數(shù)是人;
(3)∠α=;
(4)請補(bǔ)全條形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= (x+2)(x﹣4)(k為常數(shù),且k>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經(jīng)過點B的直線y=﹣ x+b與拋物線的另一交點為D.

(1)若點D的橫坐標(biāo)為﹣5,求拋物線的函數(shù)表達(dá)式;
(2)若在第一象限內(nèi)的拋物線上有點P,使得以A,B,P為頂點的三角形與△ABC相似,求k的值;
(3)在(1)的條件下,設(shè)F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當(dāng)點F的坐標(biāo)是多少時,點M在整個運動過程中用時最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足 = ,連接AF并延長交⊙O于點E,連接AD、DE,若CF=2,AF=3.給出下列結(jié)論: ①△ADF∽△AED;②FG=2;③tan∠E= ;④SDEF=4
其中正確的是(寫出所有正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案