【題目】如圖,扇形OAB與扇形OCD的圓心角都是90°,連接AC,BD.

(1)求證:ACBD

(2)OA2 cm,OC1 cm,求圖中陰影部分的面積.

【答案】(1)證明見解析;(2) S陰影π(cm2).

【解析】

(1)根據(jù)已知條件易證△AOC≌△BOD,由全等三角形的性質(zhì)即可證得ACBD;(2)根據(jù)陰影部分的面積=扇形OAB的面積-扇形OCD的面積即可求解.

(1)證明:∵∠AOB=∠COD90°

即∠AOC+∠AOD=∠BOD+∠AOD

∴∠AOC=∠BOD.

又∵AOBO,CODO,

∴△AOC≌△BOD,

AC=BD.

(2)解:由(1)AOC≌△BOD,

∴陰影部分的面積=扇形OAB的面積-扇形OCD的面積.

S陰影π(cm2)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點(diǎn)C⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DCAB的延長線相交于點(diǎn)P,弦CE平分∠ACB,交AB于點(diǎn)F,連接BE.

(1)求證:AC平分∠DAB;

(2)求證:△PCF是等腰三角形;

(3)AF=6,EF=2,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更好地開展選修課,戲劇社的張老師統(tǒng)計(jì)了近五年該社團(tuán)學(xué)生參加市級比賽的獲獎情況,并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中的信息,完成下列問題:

該社團(tuán)2017年獲獎學(xué)生人數(shù)占近五年獲獎總?cè)藬?shù)的百分比為_____,補(bǔ)全折線統(tǒng)計(jì)圖;

該社團(tuán)2017年獲獎學(xué)生中,初一、初二年級各有一名學(xué)生,其余全是初三年級學(xué)生,張老師打算從2017年獲獎學(xué)生中隨機(jī)抽取兩名學(xué)生參加學(xué)校的藝術(shù)節(jié)表演,請你用列表法或畫樹狀圖的方法,求出所抽取兩名學(xué)生恰好都來自初三年級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有50個房間供游客住宿,當(dāng)每個房間的房價(jià)為每天180元時(shí),房間會全部住滿.當(dāng)每個房間 每天的房價(jià)每增加10元時(shí),就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個房間每天的房價(jià)不得高于340元.設(shè)每個房間的房價(jià)增加x元(x10的正整數(shù)倍).

1)設(shè)一天訂住的房間數(shù)為y,直接寫出yx的函數(shù)關(guān)系式及自變量x的取值范圍;

2)設(shè)賓館一天的利潤為w元,求wx的函數(shù)關(guān)系式;

3)一天訂住多少個房間時(shí),賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)的圖象交于C、D兩點(diǎn).已知點(diǎn)C的坐標(biāo)是(6,-1),D(n,3).

(1)求m的值和點(diǎn)D的坐標(biāo).

(2)求的值.

(3)根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)IABC的內(nèi)心,AI的延長線交邊BC于點(diǎn)D,交ABC的外接圓于點(diǎn)E.

(1)求證:IEBE;

(2)IE4AE8,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在國家政策的宏觀調(diào)控下,某市的商品房成交均價(jià)由今年3月份的14 000/m2下降到5月份的12 600/m2.

(1)4,5兩月平均每月降價(jià)的百分率約是多少?(參考數(shù)據(jù):≈0.95)

(2)如果房價(jià)繼續(xù)跌落,按此降價(jià)的百分率,你預(yù)測到7月份該市的商品房成交均價(jià)是否會跌跛10 000/m2?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACAD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求AB、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案