【題目】如圖,DAC EBC 均是等邊三角形,A,C,B 三點(diǎn)在一條直線(xiàn)上,AEBD 分別與 CD、CE 交于點(diǎn) MN,AEBD 相交于點(diǎn) O.

1)求證:ACE ≌△DCB;

2)求∠AOD 的度數(shù)

3)判斷CMN 的形狀并說(shuō)明理由。

【答案】(1)見(jiàn)詳解;(2)60°;(3)見(jiàn)詳解.

【解析】

(1)欲證三角形全等,利用全等的條件進(jìn)行判定即可;因?yàn)椤鱀AC和△ECB均為等邊三角形,即有∠ACD=∠ECB=60°,再注明即可得出∠ACD=∠DCB,利用邊的關(guān)系,即可得證△ACE≌△DCB;
(2)由全等三角形的性質(zhì)和三角形的外角性質(zhì)即可得出結(jié)果;

(3)先證△MCE≌△NCB,從而得到MC=NC,再根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形可判斷△CMN 的形狀是等邊三角形.

1)證明:∵△DAC是等邊三角形,
AC=DC,∠ACD=60°,
∵△BCE為等邊三角形,
CE=CB,∠ECB=60°
∴∠ACD=ECB=60°,
∴∠ACD+DCE=ECB+DCE,
即∠ACE=DCB
ACEBCD中,

,
∴△ACE≌△DCBSAS);

(2)解:∵△ACE≌△DCB,

∴∠AEC=∠ABD.

∵∠AEC+∠BAO=∠BCE=60°

∴∠ABD +∠BAO=∠BCE=60°,

∵∠ABD +∠BAO=∠AOD,

∴∠AOD=60°.

3)解:CMN是等邊三角形,理由如下:

∵△ACE≌△DCB,

∴∠AEC=∠ABD.

△MCENCB中,

△MCENCBASA

∴CM=CN,

CMN是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,,點(diǎn)E從點(diǎn)B出發(fā),沿BC邊運(yùn)動(dòng)到點(diǎn)C,連結(jié)DE,過(guò)點(diǎn)EDE的垂線(xiàn)交AB于點(diǎn)F.

求證:

BF的最大值;

如圖2,在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,以EF為邊,在EF上方作等邊,求邊EG的中點(diǎn)H所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax2bxc經(jīng)過(guò)ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn),點(diǎn)Cx軸的正半軸上.

1求該拋物線(xiàn)的函數(shù)解析式;

2點(diǎn)F為線(xiàn)段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)FFEx軸,FGy軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);

32中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EFAC交于點(diǎn)M,DG所在的直線(xiàn)與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使DMN是等腰三角形?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:如圖,ABC為數(shù)軸上三點(diǎn),若點(diǎn)CA的距離是點(diǎn)CB的距離的2倍,我們就稱(chēng)點(diǎn)C是(AB)的好點(diǎn).例如,如圖1,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為2.表示數(shù)1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是(AB)的好點(diǎn);又如,表示數(shù)0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D就不是(A,B)的好點(diǎn),但點(diǎn)D是(B,A)的好點(diǎn).

知識(shí)運(yùn)用:如圖2,MN為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為-2,點(diǎn)N所表示的數(shù)為4

1)數(shù) 所表示的點(diǎn)是(MN)的好點(diǎn);

2)現(xiàn)有一只電子螞蟻P從點(diǎn)N出發(fā),以每秒2個(gè)單位的速度沿?cái)?shù)軸向左運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t.當(dāng)t為何值時(shí),P、MN中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為a的等邊三角形,記為第1個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接得到一個(gè)正六邊形,記為第1個(gè)正六邊形,取這個(gè)正六邊形不相鄰的三邊中點(diǎn),順次連接又得到一個(gè)等邊三角形,記為第2個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接又得到一個(gè)正六邊形,記為第2個(gè)正六邊形(如圖),,按此方式依次操作,則第6個(gè)正六邊形的邊長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=4,BC=6,B=60°,將ABC沿射線(xiàn)BC的方向平移,得到A′B′C′,再將A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為(  )

A.4,30° B.2,60° C.1,30° D.3,60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)點(diǎn)表示一個(gè)數(shù),不同位置的點(diǎn)表示不同的數(shù),每行各點(diǎn)所表示的數(shù)自左向右從小到大,且相鄰兩個(gè)點(diǎn)所表示的數(shù)相差1,每行數(shù)的和等于右邊相應(yīng)的數(shù)字,那么,表示2020的點(diǎn)在第______行,從左向右第______個(gè)位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】124日為全國(guó)法制宣傳日,當(dāng)天某初中組織4名學(xué)生參加法制知識(shí)競(jìng)賽,共設(shè)20道選擇題,各題分值相同,每題必答,下表記錄了其中2名參賽學(xué)生的得分情況

參賽者

答對(duì)題數(shù)

答錯(cuò)題數(shù)

得分

A

20

0

100

B

17

3

79

1)參賽學(xué)生72分,他答對(duì)了幾道題?答錯(cuò)了幾道題?

2)參賽學(xué)生說(shuō)他可以得88分,你認(rèn)為可能嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩地相距180km,一列慢車(chē)以40km/h的速度從甲地勻速駛往乙地,慢車(chē)出發(fā)30分鐘后,一列快車(chē)以60km/h的速度從甲地勻速駛往乙地.兩車(chē)相繼到達(dá)終點(diǎn)乙地,再次過(guò)程中,兩車(chē)恰好相距10km的次數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案