【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12;第2次輸出的結(jié)果是6;依次繼續(xù)下去……2018次輸出的結(jié)果是_____

【答案】6

【解析】

首先分別求出第3次、第4次、…、第10次輸出的結(jié)果各是多少,判斷出從第二次輸出的結(jié)果開始,每次輸出的結(jié)果分別是6、3、8、4、2、1、6、3、…,每6個(gè)數(shù)一個(gè)循環(huán);然后用2017-1的值除以6,根據(jù)商和余數(shù)的情況,判斷出2018次輸出的結(jié)果是多少即可.

解:根據(jù)數(shù)值轉(zhuǎn)換器,

1次輸出的結(jié)果是12,第2次輸出的結(jié)果是6,

3次輸出的結(jié)果是3,第4次輸出的結(jié)果是8,

5次輸出的結(jié)果是4,第6次輸出的結(jié)果是2,

7次輸出的結(jié)果是1,第8次輸出的結(jié)果是6,

9次輸出的結(jié)果是3,第10次輸出的結(jié)果是8,

∴從第二次輸出的結(jié)果開始,每次輸出的結(jié)果分別是6、3、8、4、2、1、6、3、…,每6個(gè)數(shù)一個(gè)循環(huán),

∵(2018-1)÷6=2017÷6=336……1,

∴2018次輸出的結(jié)果是6.

故答案為:6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+6于A、B兩點(diǎn),若反比例函數(shù)y= (x>0)的圖象與△ABC有公共點(diǎn),則k的取值范圍是( )

A.2≤k≤9
B.2≤k≤8
C.2≤k≤5
D.5≤k≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,則∠A、∠C、∠E、∠F滿足的數(shù)量關(guān)系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E,F(xiàn)是對(duì)角線AC上的兩點(diǎn)且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四邊形EBFD為平行四邊形;⑤SADE=SABE;⑥AF=CE這些結(jié)論中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,CA=CB=4,ACB=120°,將一塊足夠大的直角三角尺PMN(M=90°、MPN=30°)按如圖所示放置,頂點(diǎn)P在線段AB上滑動(dòng),三角尺的直角邊PM始終經(jīng)過(guò)點(diǎn)C,并且與CB的夾角∠PCB=α,斜邊PNAC于點(diǎn)D.

(1)當(dāng)PNBC時(shí),∠ACP=_____度.

(2)在點(diǎn)P滑動(dòng)的過(guò)程中,當(dāng)AP長(zhǎng)度為多少時(shí),△ADP與△BPC全等.

(3)在點(diǎn)P的滑動(dòng)過(guò)程中,△PCD的形狀可以是等腰三角形嗎?若不可以,請(qǐng)說(shuō)明理由;若可以,請(qǐng)求出夾角α的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P為四邊形ABCD邊上的任意一點(diǎn),當(dāng)∠BPC=30°時(shí),CP的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三(1)班的同學(xué)踴躍為“希望工程”捐款,根據(jù)捐款情況(捐款數(shù)為正數(shù))制作以下統(tǒng)計(jì)圖表,但班長(zhǎng)不小心把墨水滴在統(tǒng)計(jì)表上,部分?jǐn)?shù)據(jù)看不清楚.根據(jù)圖表中現(xiàn)有信息解決下列問(wèn)題:

捐款

人數(shù)

0~20元

21~40元

41~60元

61~80元

6

81元以上

4


(1)全班有多少人捐款?
(2)如果捐款0~20元的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角為72°,那么捐款21~40元的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的對(duì)稱軸為經(jīng)過(guò)點(diǎn)(1,0)的直線,其圖象與x軸交于點(diǎn)A、B,且過(guò)點(diǎn)C(0,﹣3),其頂點(diǎn)為D.

(1)求這個(gè)二次函數(shù)的解析式及頂點(diǎn)坐標(biāo);
(2)在y軸上找一點(diǎn)P(點(diǎn)P與點(diǎn)C不重合),使得∠APD=90°,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,將△APD沿直線AD翻折得到△AQD,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ACB=90AC=BC=4,DAB的中點(diǎn),E,F分別是AC BC上的點(diǎn)(點(diǎn)E不與端點(diǎn)A,C重合),且AE=CF,連接EF并取EF的中點(diǎn)O,連接DO并延長(zhǎng)至點(diǎn)G,使GO=OD.連接DE, GE GF.

(1)求證:四邊形EDFG是正方形;

(2)直接寫出四邊形EDFG面積的最小值和E點(diǎn)所在的位置.

查看答案和解析>>

同步練習(xí)冊(cè)答案