【題目】已知,的直徑,上一點(diǎn),和過點(diǎn)的切線互相垂直,垂足為點(diǎn)

如圖,求證:平分;

如圖,直線的延長(zhǎng)線交于點(diǎn),的平分線交于點(diǎn)于點(diǎn),求證:;

的條件下,如圖,若,,求的長(zhǎng).

【答案】證明見解析;(2)證明見解析;(3)

【解析】

(1)連接OC,根據(jù)切線與圓的關(guān)系和直角三角形內(nèi)角之間的關(guān)系,可以推出AC平分∠DAB;
(2)根據(jù)圓周角定理以及三角形的外角的性質(zhì)定理證明∠ECG=EGC,根據(jù)等角對(duì)等邊即可證得;
(3)證明ECB∽△EAC,根據(jù)相似三角形的性質(zhì)求得,在直角EOC中利用勾股定理列方程求得BECE,進(jìn)而求得BG,然后根據(jù)AGF∽△CGB,根據(jù)相似三角形的性質(zhì)求得FG的長(zhǎng).

證明:連接,如圖,

,

,

,

,

平分;

證明:如圖的切線,

,

,,,

,

;

解:如圖,連接、、

是直徑,

,

,

,

,

,

是直徑,

,

,

設(shè),則,在中,,

解得

,

,

,

,

,

,即,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,點(diǎn)分別是等邊、上的點(diǎn),連接、,若,求證:

(2)如圖2,在(1)問的條件下,點(diǎn)的延長(zhǎng)線上,連接延長(zhǎng)線于點(diǎn),.若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位準(zhǔn)備組織員工到武夷山風(fēng)景區(qū)旅游,旅行社給出了如下收費(fèi)標(biāo)準(zhǔn)(如圖所示):

設(shè)參加旅游的員工人數(shù)為x人.

(1)當(dāng)25<x<40時(shí),人均費(fèi)用為   元,當(dāng)x≥40時(shí),人均費(fèi)用為   元;

(2)該單位共支付給旅行社旅游費(fèi)用27000元,請(qǐng)問這次參加旅游的員工人數(shù)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上點(diǎn)C的坐標(biāo)為4,-1).

1請(qǐng)以y軸為對(duì)稱軸,畫出與△ABC對(duì)稱的△A1B1C1,并直接寫出點(diǎn)A1、B1、C1的坐標(biāo);

2ABC的面積是

3點(diǎn)Pa+1b-1與點(diǎn)C關(guān)于x軸對(duì)稱,a= b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)村莊A、B在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向A、B兩村送自來水.鋪設(shè)水管的工程費(fèi)用為每千米20000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)水管的費(fèi)用最省,并求出鋪設(shè)水管的總費(fèi)用W

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個(gè)動(dòng)點(diǎn),AE=2,AEQ沿EQ翻折形成FEQ,連接PF,PD,則PF+PD的最小值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).

(1)求拋物線的函數(shù)關(guān)系式;

(2)若P為線段AC上一點(diǎn),且SPCD=2SPAD,求點(diǎn)P的坐標(biāo);

(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是⊙O的直徑,AB為⊙O 的弦,OPAD,OPAB的延長(zhǎng)線交于點(diǎn)P.點(diǎn)COP上,且BCPC

(1)求證:直線BC是⊙O的切線;

(2)若OA=3,AB=2,求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥廠兩年前生產(chǎn)1t某種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1t該種藥品的成本是3000元.設(shè)該種藥品生產(chǎn)成本的年平均下降率為x,則下列所列方程正確的是( 。

A. 5000×2(1﹣x)=3000 B. 5000×(1﹣x)2=3000

C. 5000×(1﹣2x)=3000 D. 5000×(1﹣x2)=3000

查看答案和解析>>

同步練習(xí)冊(cè)答案