【題目】已知C為線段AB中點,∠ACMαQ為線段BC上一動點(不與點B重合),點P在射線CM上,連接PA,PQ,記BQkCP

1)若α60°,k1,

①如圖1,當QBC中點時,求∠PAC的度數(shù);

②直接寫出PA、PQ的數(shù)量關(guān)系;

2)如圖2,當α45°時.探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫出k的值并證明;若不存在,請說明理由.

【答案】1詳見解析;②PA=PQ.(2)存在,使得中的結(jié)論成立.

【解析】

1)①如圖1,作輔助線,構(gòu)建等邊三角形,證明ADC為等邊三角形.根據(jù)等邊三角形三線合一可得∠PAC=∠PAD30°;

②根據(jù)①中得結(jié)論:∠PAC=∠PQC30°,則PAPQ;

2)存在k=,如圖2,作輔助線,構(gòu)建全等三角形,證明PAD≌△PQCSAS).可得結(jié)論.

解:(1)①如圖1,在CM上取點D,使得CDCA,連接AD,

∵∠ACM60°,

∴△ADC為等邊三角形.

∴∠DAC60°

CAB的中點,QBC的中點,

ACBC2BQ

BQCP,

ACBCCD2CP

AP平分∠DAC

∴∠PAC=∠PAD30°

②∵△ADC是等邊三角形,

∴∠ACP60°,

PCCQ

∴∠PQC=∠CPQ30°,

∴∠PAC=∠PQC30°,

PAPQ;

2)存在,使得②中的結(jié)論成立.

證明:過點PPC的垂線交AC于點D

∵∠ACM45°,

∴∠PDC=∠PCD45°

PCPD,∠PDA=∠PCQ135°

,,

CDBQ

ACBC,

ADCQ

∴△PAD≌△PQCSAS).

PAPQ

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線ACBD相交于點O,DEACAEBD

1)求證:四邊形AODE是矩形;

2)若AB2,∠BCD120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yx2x3,與x軸交于AB兩點(點A在點B的左側(cè)),與y軸交于點C,過點A的直線與拋物線在第一象限的交點M的橫坐標為,直線AMy軸交于點D,連接BC、AC

1)求直線ADBC的解折式;

2)如圖2,E為直線BC下方的拋物線上一點,當△BCE的面積最大時,一線段FG4(點FG的左側(cè))在直線AM上移動,順次連接B、EF、G四點構(gòu)成四邊形BEFG,請求出當四邊形BEFG的周長最小時點F的坐標;

3)如圖3,將△DAC繞點D逆時針旋轉(zhuǎn)角度α0°<α180°),記旋轉(zhuǎn)中的三角形為△DAC′,若直線AC′分別與直線BCy軸交于M、N,當△CMN是等腰三角形時,請直接寫出CM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本學(xué)期開學(xué)初,學(xué)校體育組對九年級某班50名學(xué)生進行了跳繩項目的測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.

根據(jù)統(tǒng)計圖解答下列問題:

1)本次測試的學(xué)生中,得4分的學(xué)生有多少人?

2)本次測試的平均分是多少分?

3)通過一段時間的訓(xùn)練,體育組對該班學(xué)生的跳繩項目進行了第二次測試,測得成績的最低分為3分.且得4分和5分的人數(shù)共有45人,平均分比第一次提高了0.8分,問第二次測試中得4分、5分的學(xué)生各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,是等圓,內(nèi)接于,點,分別在,上.如圖,

①以為圓心,長為半徑作弧交于點,連接

②以為圓心,長為半徑作弧交于點,連接;

下面有四個結(jié)論:

所有正確結(jié)論的序號是( ).

A.①②③④B.①②③C.②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)競賽中有5道選擇題,每題1分,每道題在、、三個選項中,只有一個是正確的.下表是甲、乙、丙、丁四位同學(xué)每道題填涂的答案和這5道題的得分:

第一題

第二題

第三題

第四題

第五題

得分

4

3

2

1)則甲同學(xué)錯的是第 題;

2)丁同學(xué)的得分是 ;

3)如果有一個同學(xué)得了1分,他的答案可能是 (寫出一種即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,在平面直角坐標系中的位置如圖所示.

1)直接寫出關(guān)于原點的中心對稱圖形各頂點坐標:________________________;

2)將B點逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后圖形.在旋轉(zhuǎn)過程中所掃過的圖形的面積和點經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,給出如下定義:已知兩個函數(shù),如果對于任意的自變量,這兩個函數(shù)對應(yīng)的函數(shù)值記為, 恒有點和點關(guān)于點成中心對稱(此三個點可以重合),由于對稱中心都在直線上,所以稱這兩個函數(shù)為關(guān)于直線的“相依函數(shù)”。例如: 為關(guān)于直線的 “相依函數(shù)”.

(1)已知點是直線上一點,請求出點關(guān)于點成中心對稱的點的坐標:

(2)若直線和它關(guān)于直線的“相依函數(shù)”的圖象與軸圍成的三角形的面積為,求的值;

(3)若二次函數(shù)為關(guān)于直線的“相依函數(shù)”.

①請求出的值;

②已知點、點連接直接寫出兩條拋物線與線段有目只有兩個交占時對應(yīng)的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+cx軸于A(﹣1,0),B(3,0),交y軸的負半軸于C,頂點為D.下列結(jié)論:①2a+b=0;②2c<3b;③m≠1時,a+b<am2+bm;④△ABD是等腰直角三角形時,則a= ;⑤△ABC是等腰三角形時,a的值有3個.其中正確的有( 。﹤

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

同步練習(xí)冊答案