【題目】為早日實現(xiàn)脫貧奔小康的宏偉目標(biāo),我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當(dāng)?shù)卣闹С窒,辦起了民宿合作社,專門接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價x(元)和游客居住房間數(shù)y(間)的信息,樂樂繪制出y與x的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)合作社規(guī)定每個房間價格不低于60元且不超過150元,對于游客所居住的每個房間,合作社每天需支出20元的各種費用,房價定為多少時,合作社每天獲利最大?最大利潤是多少?
【答案】(1)y=﹣0.5x+110;(2)房價定為120元時,合作社每天獲利最大,最大利潤是5000元.
【解析】(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得相應(yīng)的函數(shù)解析式;
(2)根據(jù)題意可以得到利潤與x之間的函數(shù)解析式,從而可以求得最大利潤.
(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,
,解得:,
即y與x之間的函數(shù)關(guān)系式是y=﹣0.5x+110;
(2)設(shè)合作社每天獲得的利潤為w元,
w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,
∵60≤x≤150,
∴當(dāng)x=120時,w取得最大值,此時w=5000,
答:房價定為120元時,合作社每天獲利最大,最大利潤是5000元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上,兩點對應(yīng)的有理數(shù)分別為和12,點從點出發(fā),以每秒1個單位長度的速度沿數(shù)軸負(fù)方向運動,點同時從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設(shè)運動時間為秒.
(1)求經(jīng)過2秒后,數(shù)軸點、分別表示的數(shù);
(2)當(dāng)時,求的值;
(3)在運動過程中是否存在時間使,若存在,請求出此時的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+4x+c(a≠0)經(jīng)過點A(﹣1,0),點E(4,5),與y軸交于點B,連接AB.
(1)求該拋物線的解析式;
(2)將△ABO繞點O旋轉(zhuǎn),點B的對應(yīng)點為點F.
①當(dāng)點F落在直線AE上時,求點F的坐標(biāo)和△ABF的面積;
②當(dāng)點F到直線AE的距離為時,過點F作直線AE的平行線與拋物線相交,請直接寫出交點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1+∠4﹦180°,∠2﹦∠E,則EF∥BC,下面是王華同學(xué)的推導(dǎo)過程﹐請你幫他在括號內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.
證明:
∵∠1+∠4﹦180°( ),
∠3﹦∠4 ( ),
∴∠1﹢ ﹦180°.
∴AE∥CG ( )
∴∠E﹦∠CGF( ).
∵∠2﹦∠E(已知)
∴ ∠2﹦∠CGF( ).
∴ BC∥EF( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月份,我市某中學(xué)開展?fàn)幾觥拔搴眯」瘛闭魑谋荣惢顒,賽后隨機抽取了部分參賽學(xué)生的成績,按得分劃分為A,B,C,D四個等級,并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:
等級 | 成績(s) | 頻數(shù)(人數(shù)) |
A | 90<s≤100 | 4 |
B | 80<s≤90 | x |
C | 70<s≤80 | 16 |
D | s≤70 | 6 |
根據(jù)以上信息,解答以下問題:
(1)表中的x= ;
(2)扇形統(tǒng)計圖中m= ,n= ,C等級對應(yīng)的扇形的圓心角為 度;
(3)該校準(zhǔn)備從上述獲得A等級的四名學(xué)生中選取兩人做為學(xué)!拔搴眯」瘛敝驹刚撸阎@四人中有兩名男生(用a1,a2表示)和兩名女生(用b1,b2表示),請用列表或畫樹狀圖的方法求恰好選取的是a1和b1的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項式(x2+mx﹣y+3)﹣(3x﹣2y+1﹣nx2).
(1)若多項式的值與字母x的取值無關(guān),求m,n的值;
(2)先化簡多項式3(m2﹣mn﹣n2)﹣(3m2+mn+n2),再求它的值;
(3)在(1)的條件下,求(n+m2)+(2n+m2)+(3n+m2)+…+(9n+m2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,DE 垂直平分 AB,分別交 AB、BC 于點 D、E,MN 垂直平分 AC,分別交 AC、BC 于 M、N 點.
(1)如圖,若∠BAC=100°,求∠EAN 的度數(shù);
(2)若∠BAC=α(α≠90°)用α表示∠EAN 的大小.(直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com