【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2 ,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將 繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為
【答案】
【解析】解:由旋轉(zhuǎn)可知AD=BD, ∵∠ACB=90°,AC=2 ,
∴CD=BD,
∵CB=CD,
∴△BCD是等邊三角形,
∴∠BCD=∠CBD=60°,
∴BC= AC=2,
∴陰影部分的面積=2 ×2÷2﹣ = .
所以答案是: .
【考點精析】利用扇形面積計算公式和旋轉(zhuǎn)的性質(zhì)對題目進行判斷即可得到答案,需要熟知在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2);①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,沿AC方向開山修建一條公路,為了加快施工進度,要在小山的另一邊尋找點E同時施工,從AC上的一點B取∠ABD=150°,沿BD的方向前進,取∠BDE=60°,測得BD=520m,BC=80m,并且AC,BD和DE在同一平面內(nèi),那么公路CE段的長度為( )
A.180m
B.260 m
C.(260 ﹣80)m
D.(260 ﹣80)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖B,E,C,F(xiàn), 四點在同一條直線上,EB=CF,∠DEF=∠ABC,添加以下哪一個條件不能判斷 △ABC≌△DEF 的是 ( )
A. ∠A=∠D B. DF∥AC C. AC=DF D. AB=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是 的中點,AE⊥AC于A,與⊙O及CB的延長線交于點F、E,且 .
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AC為對角線,點E為AC上一點,連接EB,ED.
(1)求證:△BEC≌△DEC;
(2)延長BE交AD于點F,當∠BED=120°時,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵市民節(jié)約用電,某市對居民用電實行“階梯收費”(總電費=第一階梯電費+第二階梯電費).規(guī)定:用電量不超過200度按第一階梯電價收費,超過200度的部分按第二階梯電價收費.如圖是張磊家2018年1月和3月所交電費的收據(jù),則該市規(guī)定的第一階梯電價和第二階梯電價分別為每度( 。
A. 0.5元、0.6元 B. 0.4元、0.5元 C. 0.3元、0.4元 D. 0.6元、0.7元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一段長為1200m的筆直路上勻速跑步,甲、乙的速度分別為4m/s和6m/s,起跑前乙在起點,甲在乙前面100m處.若同時起跑,甲、乙兩人在從起跑至其中一人先到達終點的過程中,他們之間的距離y(m)與時間t(s)的函數(shù)圖像如圖所示.則t1=________s,y2=________m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,動點P從點A出發(fā),以每秒1cm的速度沿線段AB向點B運動,連接DP,把∠A沿DP折疊,使點A落在點A′處.求出當△BPA′為直角三角形時,點P運動的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com