【題目】如圖,在矩形ABCD中,對角線AC的垂直平分線分別交BC、AD于點F. E,垂足為O.
(1)求證:四邊形AFCE為菱形;
(2)若AB=4,BC=8,求菱形AFCE的面積.
【答案】(1)詳見解析;(2)20
【解析】
(1)先證明△AOE≌△COF,得出OE=OF,再根據(jù)EF垂直平分AC,可得出四邊形AFCE為菱形;
(2)設(shè)AF=x,由AB=4,BC=8,得BF=8x,根據(jù)勾股定理可得出AF的長,根據(jù)菱形的面積求解即可.
(1)證明:∵EF垂直平分AC,
∴OA=OC,
∵四邊形ABCD為矩形,
∴AD∥BC,
∴∠EAO=∠FCO,∠AOE=∠COF,
在△AOE和△COF中,
∠EAO=∠FOC
AO=CO
∠AOE=∠COF,
∴△AOE≌△COF,
∴OE=OF,
∴四邊形AFCE為菱形;
(2)解:設(shè)AF=x,
∵AB=4,BC=8,∴BF=8x,
∴AF2=AB2+BF2,
∴x2=42+(8x)2,
∴x=5,
∴S菱形AFCE=FCAB=5×4=20,
∴菱形面積為20.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】德州扒雞聞名全國,遠銷海外,被譽為“天下第一雞”.某種德州扒雞其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售量可增加20千克,若該專賣店銷售這種扒雞想要平均每天獲利2240元,請回答:
(1)每千克這種扒雞應(yīng)降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A(-2,-5),C(n,2),交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)和一次函數(shù)y=kx+b的表達式;
(2)請直接寫出不等式的解集.
(3)連接OA,OC.求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.
(1)求點A、B、D的坐標;
(2)若△AOD與△BPC相似,求a的值;
(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉(zhuǎn),若B、P在直線a的異側(cè), BM直線a于點M,CN直線a于點N,連接PM、PN;
(1) 延長MP交CN于點E(如圖2)。 求證:△BPM△CPE; 求證:PM = PN;
(2) 若直線a繞點A旋轉(zhuǎn)到圖3的位置時,點B、P在直線a的同側(cè),其它條件不變。此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3) 若直線a繞點A旋轉(zhuǎn)到與BC邊平行的位置時,其它條件不變。請直接判斷四邊形MBCN
的形狀及此時PM=PN還成立嗎?不必說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖,AD與地面的夾角為60°,為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°變成37°,因此傳送帶的落地點由點B到點C向前移動了2米.
(1)求點A與地面的高度;
(2)如果需要在貨物著地點C的左側(cè)留出2米,那么請判斷距離D點14米的貨物2是否需要挪走,并說明理由.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC和BD相交于點O,AC=10,BD=4,動點P在邊AB上運動,以點O為圓心,OP為半徑作⊙O,CQ切⊙O于點Q,則在點P運動過程中,CQ的長的最大值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫弧交⊙O于點C,連結(jié)BC交AD于點E,若DE=3,BC=8,則⊙O的半徑長為( )
A.B.5C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】取三張形狀大小一樣,質(zhì)地完全的相同卡片,在三張卡片上分別寫上“李明、王強、孫偉”這三個同學(xué)的名字,然后將三張卡片放入一個不透明的盒子里.
(1)林老師從盒子中任取一張,求取到寫有李明名字的卡片概率是多少?
(2)林老師從盒子中取出一張卡片,記下名字后放回,再從盒子中取出第二張卡片,記下名字.用列表或畫樹形圖列出林老師取到的卡片的所有可能情況,并求出兩次都取到寫有李明名字的卡片的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com