在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B.

(1)求:二次函數(shù)的解析式及B點(diǎn)坐標(biāo);

(2)若將拋物線為對(duì)稱軸向右翻折后,得到一個(gè)新的二次函數(shù),已知二次函數(shù)與x軸交于兩點(diǎn),其中右邊的交點(diǎn)為C點(diǎn).點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動(dòng),過P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)D.點(diǎn)E、點(diǎn)F也隨之運(yùn)動(dòng));

①當(dāng)點(diǎn)E在二次函數(shù)y1的圖像上時(shí),求OP的長(zhǎng).

②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,同時(shí)線段OC上另一個(gè)點(diǎn)Q從C點(diǎn)出發(fā)向O點(diǎn)做勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度(當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)停止運(yùn)動(dòng),P點(diǎn)也同時(shí)停止運(yùn)動(dòng)).過Q點(diǎn)作x軸的垂線,與直線AC交于G點(diǎn),以QG為邊在QG的左側(cè)作正方形QGMN(當(dāng)Q點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)G、點(diǎn)M、點(diǎn)N也隨之運(yùn)動(dòng)),若P點(diǎn)運(yùn)動(dòng)t秒時(shí),兩個(gè)正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

 

【答案】

(1),B(3,0);(2)①;②或2.

【解析】

試題分析:(1)利用二次函數(shù)的圖象經(jīng)過原點(diǎn)及點(diǎn)A(1,2),分別代入求出a,c的值即可;

(2)①過A點(diǎn)作AH⊥x軸于H點(diǎn),根據(jù)DP∥AH,得出△OPD∽△OHA,進(jìn)而求出OP的長(zhǎng);

②分別利用當(dāng)點(diǎn)F、點(diǎn)N重合時(shí),當(dāng)點(diǎn)F、點(diǎn)Q重合時(shí),當(dāng)點(diǎn)P、點(diǎn)N重合時(shí),當(dāng)點(diǎn)P、點(diǎn)Q重合時(shí),求出t的值即可.

試題解析:(1)∵二次函數(shù)的圖象經(jīng)過原點(diǎn)及點(diǎn)A(1,2),∴將(0,0),代入得出:c=0,將(1,2)代入得出:a+3=2,解得:,故二次函數(shù)解析式為:,∵圖象與x軸相交于另一點(diǎn)B,∴,解得:x=0或3,則B(3,0);

(2)①由已知可得C(6,0),如圖:過A點(diǎn)作AH⊥x軸于H點(diǎn),∵DP∥AH,∴△OPD∽△OHA,∴,即,∴PD=2a,∵正方形PDEF,∴E(3a,2a),∵E(3a,2a)在二次函數(shù)y1=﹣x2+3x的圖象上,∴a=;即OP=;

②如圖1:

當(dāng)點(diǎn)F、點(diǎn)N重合時(shí),有OF+CN=6,∵直線AO過點(diǎn)(1,2),故直線解析式為:y=2x,當(dāng)OP=t,則AP=2t,∵直線AC過點(diǎn)(1,2),(6,0),代入y=ax+b,,,解得:,故直線AC的解析式為:,∵當(dāng)OP=t,QC=2t,∴QO=6﹣2t,∴GQ=,即NQ=,∴OP+PN+NQ+QC=6,則有,解得:

如圖2:

當(dāng)點(diǎn)F、點(diǎn)Q重合時(shí),有OF+CQ=6,則有,解得:

如圖3:

當(dāng)點(diǎn)P、點(diǎn)N重合時(shí),有OP+CN=6,則有,解得:;

如圖4:

當(dāng)點(diǎn)P、點(diǎn)Q重合時(shí),有OP+CQ=6,則有,解得:.故此刻t的值為:,,

考點(diǎn):二次函數(shù)綜合題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對(duì)稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案