我們知道數(shù)學(xué)公式;數(shù)學(xué)公式;數(shù)學(xué)公式;…根據(jù)上述規(guī)律,計算數(shù)學(xué)公式=________.


分析:分別根據(jù)題意把對應(yīng)的分式拆分成差的形式,則原式=(1-)+(-)+(-)+…(-)=1-=
解答:原式=(1-)+(-)+(-)+…(-)=1-=
點評:解此類題目,關(guān)鍵是根據(jù)所給的條件找到規(guī)律.根據(jù)題中所給的材料獲取所需的信息和解題方法是需要掌握的基本技能.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,根據(jù)二次函數(shù)的平移規(guī)律,可以由簡單的函數(shù)通過平移后得到較復(fù)雜的函數(shù),事實上,對于其他函數(shù)也是如此.如一次函數(shù),反比例函數(shù)等.請問y=
3x-2
x-1
可以由y=
1
x
通過
 
平移得到.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道
1
1×2
=
1
1
-
1
2
;
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…根據(jù)上述規(guī)律,計算
1
1×2
+
1
2×3
+
1
3×4
+…
1
9×10
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sadA=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad60°=
1
1
;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知cosA=
4
5
,其中∠A為銳角,試求sanA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
1
2
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

同步練習(xí)冊答案