想一想,如圖,分別以直角三角形三邊為直徑作三個(gè)半圓,這三個(gè)半圓的面積之間有什么關(guān)系?為什么?

答案:
解析:

以直角三角形兩直角邊為直徑的兩個(gè)半圓的面積之和等于以該直角三角形斜邊為直徑作的半圓的面積,利用勾股定理證明.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個(gè)正方形DEFG,使正方形的一條邊DE落在BC上,頂點(diǎn)F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準(zhǔn)確地畫出正方形.
小聰和小明各給出了一種想法,請(qǐng)你在Ⅱa和Ⅱb的兩個(gè)問題中選擇一個(gè)你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計(jì)算出正方形的邊長(zhǎng)就能求出BD和CE的長(zhǎng),從而確定D點(diǎn)和E點(diǎn),再畫正方形DEFG就容易了.
設(shè)△ABC的邊長(zhǎng)為2,請(qǐng)你幫小聰求出正方形的邊長(zhǎng).(結(jié)果用含根號(hào)的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長(zhǎng)也能畫出正方形.具體作法是:
①在AB邊上任取一點(diǎn)G′,如圖作正方形G′D′E′F′;
②連接BF′并延長(zhǎng)交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四精英家教網(wǎng)邊形DEFG即為所求.
你認(rèn)為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•南開區(qū)一模)閱讀下面材料:小明遇到這樣一個(gè)問題:如圖1,△ABO和△CBO均為等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面積為1,試求以AD、BC、OC+OD的長(zhǎng)度為三邊長(zhǎng)的三角形的面積.小明是這樣思考的:要解決這個(gè)問題,首先應(yīng)想辦法移動(dòng)這些分散的線段,構(gòu)成一個(gè)三角形,在計(jì)算其面積即可.他利用圖形變換解決了這個(gè)問題,其解題思路是延長(zhǎng)CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而等到的△BCE即時(shí)以AD、BC、OC+OD的長(zhǎng)度為三邊長(zhǎng)的三角形(如圖2).
(I)請(qǐng)你回答:圖2中△BCE的面積等于
2
2

(II)請(qǐng)你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:如圖3,已知ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.若△ABC的面積為1,則以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面材料,再解答所提出的問題
老師在給同學(xué)們作已知角的平分線:
已知:∠AOB.
求作:射線OC,使∠AOC=∠BOC.
作法:①以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑畫弧交OA于點(diǎn)M,交OB于點(diǎn)N(如圖);
②分別以M、N為圓心,都以不小于
12
MN長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)C;
③作射線OC.
則射線OC就是∠AOB的平分線.
根據(jù)老師的作法,想一想,射線OC為什么是∠AOB的平分線,請(qǐng)你運(yùn)用學(xué)過的知識(shí)給以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)課外練習(xí)八年級(jí)下學(xué)期使用 題型:059

如圖,在直角梯形ABCD中,ADBC,∠B=90°,AD=24 cm,BC=26 cm,動(dòng)點(diǎn)PA開始沿邊.ADD以每秒1 cm的速度運(yùn)動(dòng);動(dòng)點(diǎn)Q是從C開始沿CB邊向B以每秒3 cm的速度運(yùn)動(dòng).P、Q兩點(diǎn)分別從點(diǎn)A、點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)時(shí)間為t(s),問t為何值時(shí),四邊形PQCD為平行四邊形?

想一想:四邊形PQCD能是等腰梯形嗎?若能,求出t值;若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案